Skip to main content
Log in

Optimized Ewald sum for electrostatics in molecular self-assembly systems at interfaces

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We extend the recent formulation of the Ewald sum for electrostatics in a two-dimensionally periodic three-dimensional multi- atom layer or two-dimensional single-atom layer system with a rectangular periodic boundary condition (J Chem Theory Comput, 2014, 10: 534–542) to that with a parallelogrammic periodic boundary condition in general. Following the discussion of an efficient implementation of the formula, we suggest a simple setup of parameters using a relatively smaller screening factor and the associated larger real space cutoff distance to reach an optimized algorithm of an order N computational cost. The connection between the previous application of the Ewald sum to ionic crystal systems and the future application to molecular self-assembly or disassembly systems on solid surfaces or at liquid-liquid interfaces are illustrated to demonstrate the applicability of the present work to simulate the self-assembly process and to produce dynamical, structural and thermodynamic properties of experimental self-assembly systems of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Service RF. How far can we push chemical self-assembly. Science, 2005, 309: 95

    Article  CAS  Google Scholar 

  2. Wang Y, Lin H, Ding S, Liu D, Chen L, Lei Z, Fan F, Tian Z. Some thoughts about controllable assembly (i)-from catalysis to cassemblysis. Sci Sin Chim, 2012, 42: 525–547

    Article  CAS  Google Scholar 

  3. Zhao YH, Hu ZH. Graphene in ionic liquids: Collective van der waals interaction and hindrance of self-assembly pathway. J Phys Chem B, 2013, 117: 10540–10547

    Article  CAS  Google Scholar 

  4. Ewald PP. Evaluation of optical and electrostaic lattice potentials. Ann Phys Leipzig, 1921, 64: 253–287

    Article  Google Scholar 

  5. Darden T, York D, Pedersen L. Particle mesh ewald: An n log(n) method for ewald sums in large systems. J Chem Phys, 1993, 98: 10089–10092

    Article  CAS  Google Scholar 

  6. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh ewald method. J Chem Phys, 1995, 103: 8577–8593

    Article  CAS  Google Scholar 

  7. Gutzler R, Sirtl T, Dienstmaier JF, Mahata K, Heckl WM, Schmittel M, Lackinger M. Reversible phase transitions in self-assembled monolayers at the liquidolid interface: temperature-controlled opening and closing of nanopores. J Am Chem Soc, 2010, 132: 5084–5090

    Article  CAS  Google Scholar 

  8. Barber M, Heyes DM, Clarke JHR. Molecular dynamics computer simulation of surface properties of crystalline potassium chloride. J Chem Soc, Faraday Trans. II: Mol Chem Phys, 1977, 73: 1485–1496

    Article  Google Scholar 

  9. De Leeuw SW, Perram JW. Electrostatic lattice sums for semi-infinite lattices. Mol Phys, 1979, 37: 1313–1322

    Article  Google Scholar 

  10. Weeks JD. Connecting local structure to interface formation: A molecular scale van der waals theory of nonuniform liquids. Ann Rev Phys Chem, 2002, 53: 533–562

    Article  CAS  Google Scholar 

  11. Chen Y-G, Kaur C, Weeks JD. Connecting systems with short and long ranged interactions: local molecular field theory for ionic fluids. J Phys Chem B, 2004, 108: 19874–19884

    Article  CAS  Google Scholar 

  12. Chen Y-G, Weeks JD. Local molecular field theory for effective attractions between like charged objects in systems with strong Coulomb interactions. Proc Natl Acad Sci USA, 2006, 103: 7560–7565

    Article  CAS  Google Scholar 

  13. Rodgers JM, Kaur C, Chen Y-G, and John D. JD. Attraction between like-charged walls: short-ranged simulations using local molecular field theory. Phy Rev Lett, 2006, 97: 097801

    Article  Google Scholar 

  14. Rodgers JM, Weeks JD. Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water. Proc Natl Acad Sci USA, 2008, 105: 19136–19141

    Article  CAS  Google Scholar 

  15. Rodgers JM. Ph.D. Thesis, The University of Maryland, 2008.

  16. Denesyuk N, Weeks JD. A new approach for efficient simulation of Coulomb interactions in ionic fluids. J Chem Phys, 2008, 128: 124109

    Article  Google Scholar 

  17. Hu ZH, Weeks JD. Efficient solutions of self-consistent mean field equations for dewetting and electrostatics in nonuniform liquids. Phys Rev Lett, 2010, 105: 140602

    Article  Google Scholar 

  18. Rodgers JM, Zhonghan Hu ZH, Weeks JD. On the efficient and accurate short-ranged simulations of uniform polar molecular liquids. Mol Phys, 2011, 109: 1195–1211

    Article  CAS  Google Scholar 

  19. Remsing RC, Weeks JD. Deconstructing classical water models at interfaces and in bulk. J Stat Phys, 2011, 145: 313–334

    Article  CAS  Google Scholar 

  20. Remsing RC, Weeks JD. Dissecting hydrophobic hydration and association. J Phys Chem B, 2013, 117: 15479–15491

    Article  CAS  Google Scholar 

  21. Hautman J, Klein ML. An ewald summation method for planar surfaces and interfaces. Mol Phys, 1992, 75: 379–395

    Article  CAS  Google Scholar 

  22. Yeh I-C, Berkowitz ML. Ewald summation for systems with slab geometry. J Chem Phys, 1999, 111: 3155–3162

    Article  CAS  Google Scholar 

  23. Arnold A, de Joannis J, Holm C. Electrostatics in periodic slab geometries. I. J Chem Phys, 2002, 117: 2496–2502

    Article  CAS  Google Scholar 

  24. Mináry P, Tuckerman ME, Pihakari KA, Martyna GJ. A new reciprocal space based treatment of long range interactions on surfaces. J Chem Phys, 2002, 116: 5351–5362

    Article  Google Scholar 

  25. Smith ER. Electrostatic potentials in systems periodic in one, two, and three dimensions. J Chem Phys, 2008, 128: 174104

    Article  CAS  Google Scholar 

  26. Lindbo D, Tornberg A-K. Fast and spectrally accurate ewald summation for 2-periodic electrostatic systems. J Chem Phys, 2012, 136: 164111

    Article  Google Scholar 

  27. Pan C, Hu ZH. Rigorous error bounds for ewald summation of electrostatics at planar interfaces. J Chem Theory Comput, 2014, 10: 534–542

    Article  CAS  Google Scholar 

  28. Smith ER. Electrostatic energy in ionic crystals. Proc R Soc London, Ser A: Math Phys Sci, 1981, 375: 475

    Article  CAS  Google Scholar 

  29. Arnold A, Holm C. Mmm2d: A fast and accurate summation method for electrostatic interactions in 2D slab geometries. Comput Phys Commun, 2002, 148: 327–348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghan Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Hu, Z. Optimized Ewald sum for electrostatics in molecular self-assembly systems at interfaces. Sci. China Chem. 58, 1044–1050 (2015). https://doi.org/10.1007/s11426-014-5303-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5303-8

Keywords

Navigation