Skip to main content
Log in

Surface chemistry of polymer-supported nano-hydrated ferric oxide for arsenic removal: effect of host pore structure

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Immobilization of hydrous ferric oxide (HFO) particles inside solid hosts of porous structure is an important approach to improve their applicability in advanced water treatment such as arsenic and heavy metal removal. Here, we fabricated three polystyrene (PS)-based nano-HFOs and explored the effect of host pore structure on the surface chemistry of the immobilized HFOs. Potentiometric titration of the hybrids and surface complexation modeling of their adsorption towards arsenite and arsenate were performed to evaluate the surface chemistry variation of the loaded HFOs. Polymer hosts of higher surface area and narrower pore size would result in smaller particle size of HFOs and lower the value of the point of zero charge. Also, the site density (normalized by Fe mass) and the deprotonation constants of the loaded HFOs increased with the decreasing host pore size. Arsenite adsorption did not change the surface charge of the loaded HFOs, whereas arsenate adsorption accompanied more of the negative surface charges. Adsorption affinity of both arsenic species with three HFO hybrids were compared in terms of the intrinsic surface complexation constants optimized based on the adsorption edges. HFO loaded in polystyrene host of smaller pore size exhibits stronger affinity with arsenic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pierce ML, Moore CB. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res, 1982, 16: 1247–1253

    Article  CAS  Google Scholar 

  2. Tuutijärvi T, Lu J, Sillanpää M, Chen, G. As(V) adsorption on maghemite nanoparticles. J Hazard Mater, 2009, 166: 1415–1420

    Article  Google Scholar 

  3. Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X. Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res, 2005, 39: 2327–2337

    Article  CAS  Google Scholar 

  4. Hristovski KD, Westerhoff PK, Crittenden JC, Olson LW. Arsenate removal by nanostructured ZrO2 spheres. Environ Sci Technol, 2008, 42: 3786–3790

    Article  CAS  Google Scholar 

  5. Martinson CA, Reddy K. Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J Colloid Interface Sci, 2009, 336: 406–411

    Article  CAS  Google Scholar 

  6. Manning BA, Fendorf SE, Goldberg S. Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes. Environ Sci Technol, 1998, 32: 2383–2388

    Article  CAS  Google Scholar 

  7. Guo X, Du Y, Chen F, Park HS, Xie Y. Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (β-FeOOH): EXAFS study. J Colloid Interface Sci, 2007, 314: 427–433

    Article  CAS  Google Scholar 

  8. Cumbal L, SenGupta AK. Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of Donnan membrane effect. Environ Sci Technol, 2005, 39: 6508–6515

    Article  CAS  Google Scholar 

  9. Gupta V, Saini V, Jain N. Adsorption of As(III) from aqueous solutions by iron oxide-coated sand. J Colloid Interface Sci, 2005, 288: 55–60

    Article  CAS  Google Scholar 

  10. Zeng L. A method for preparing silica-containing iron(III) oxide adsorbents for arsenic removal. Water Res, 2003, 37: 4351–4358

    Article  CAS  Google Scholar 

  11. Jang M, Min SH, Kim TH, Park JK. Removal of arsenite and arsenate using hydrous ferric oxide incorporated into naturally occurring porous diatomite. Environ Sci Technol, 2006, 40: 1636–1643

    Article  CAS  Google Scholar 

  12. Chen W, Parette R, Zou J, Cannon FS, Dempsey BA. Arsenic removal by iron-modified activated carbon. Water Res, 2007, 41: 1851–1858

    Article  CAS  Google Scholar 

  13. Nguyen TV, Vigneswaran S, Ngo HH, Kandasamy J. Arsenic removal by iron oxide coated sponge: experimental performance and mathematical models. J Hazard Mater, 2010, 182: 723–729

    Article  CAS  Google Scholar 

  14. Pan BC, Pan BJ, Xiao LL, Nie GZ, Wu J, Lv L, Zhang WM, Zheng SR. Adsorptive selenite removal from water using a nano-hydrated ferric oxides (HFOs)/polymer hybrid adsorbent. J Environ Monit, 2010, 12: 305–310

    Article  CAS  Google Scholar 

  15. Pan BJ, Wu J, Pan BC, Lv L, Zhang WM, Xiao LL, Wang XS, Tao XC, Zheng SR. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents. Water Res, 2009, 43: 4421–4429

    Article  CAS  Google Scholar 

  16. Wang J, Zhang SJ, Pan BC, Zhang WM, Lv L. Hydrous ferric oxide-resin nanocomposites of tunable structure for arsenite removal: effect of the host pore structure. J Hazard Mater, 2011, 198: 241–246

    Article  CAS  Google Scholar 

  17. Nie GZ, Pan BC, Zhang SJ, Pan BJ. Surface chemistry of nanosized hydrated ferric oxide encapsulated inside porous polymer: modeling and experimental studies. J Phys Chem C, 2013, 117: 6201–6209

    Article  CAS  Google Scholar 

  18. Pan BC, Chen XQ, Zhang WM. A process to prepared a polymer-based hybrid sorbent for arsenic removal. Chinese Patent, ZL200510095177.5, 2005

    Google Scholar 

  19. Grossl PR, Eick M, Sparks DL, Goldberg S, Ainsworth CC. Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ Sci Technol, 1997, 31: 321–326

    Article  CAS  Google Scholar 

  20. Goldberg S. Use of surface complexation models in soil chemical systems. Adv Agron, 1992, 47: 233–329

    Article  CAS  Google Scholar 

  21. Gao Y, Mucci A. Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Geochim Cosmochim Acta, 2001, 65: 2361–2378

    Article  CAS  Google Scholar 

  22. Herbelin AL, Westall JC. FITEQL, a computer program for determination of chemical equilibrium constants from experimental data. Version 4.0. Oregon State University, 1999

    Google Scholar 

  23. Zeng H, Singh A, Basak S, Ulrich KU, Sahu M, Biswas P, Catalano JG, Giammar DE. Nanoscale size effects on uranium(VI) adsorption to hematite. Environ Sci Technol, 2009, 43: 1373–1378

    Article  CAS  Google Scholar 

  24. Sverjensky DA. Standard states for the activities of mineral surface sites and species. Geochim Cosmochim Acta, 2003, 67: 17–28

    Article  CAS  Google Scholar 

  25. He YT, Wan J, Tokunaga T. Kinetic stability of hematite nanoparticles: the effect of particle sizes. J Nanopart Res, 2008, 10: 321–332

    Article  CAS  Google Scholar 

  26. Vayssieres L. On the effect of nanoparticle size on water-oxide interfacial chemistry. J Phys Chem C, 2009, 113: 4733–4736

    Article  CAS  Google Scholar 

  27. Dzombak DA, Morel FMM. Surface Complexation Modeling: Hydrous Ferric Oxide. New York: John Wiley & Sons Inc., 1990

    Google Scholar 

  28. Cristiano E, Hu YJ, Siegfried M, Kaplan D, Nitsche H. A comparison of point of zero charge measurement methodology. Clays Clay Miner, 2011, 59: 107–115

    Article  CAS  Google Scholar 

  29. Stumm W, Morgan JJ. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. New York: John Wiley & Sons, 2012

    Google Scholar 

  30. Wilkie JA, Hering JG. Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloid Surface A, 1996, 107: 97–110

    Article  CAS  Google Scholar 

  31. Jang JH, Dempsey BA. Coadsorption of arsenic(III) and arsenic(V) onto hydrous ferric oxide: effects on abiotic oxidation of arsenic(III), extraction efficiency, and model accuracy. Environ Sci Technol, 2008, 42: 2893–2898

    Article  CAS  Google Scholar 

  32. Dixit S, Hering JG. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol, 2003, 37: 4182–4189

    Article  CAS  Google Scholar 

  33. Madden AS, Hochella Jr MF, Luxton TP. Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochim Cosmochim Acta, 2006, 70: 4095–4104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingcai Pan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, G., Wang, J., Pan, B. et al. Surface chemistry of polymer-supported nano-hydrated ferric oxide for arsenic removal: effect of host pore structure. Sci. China Chem. 58, 722–730 (2015). https://doi.org/10.1007/s11426-014-5285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5285-6

Keywords

Navigation