Skip to main content

Theoretical Studies of Plasmonic Effects in Organic Solar Cells

  • Chapter
  • First Online:
Organic Solar Cells

Part of the book series: Green Energy and Technology ((GREEN))

  • 4994 Accesses

Abstract

The book chapter provides a systematic study on plasmonic effects in organic solar cells (OSCs). We first introduce the concepts, significance, and recent progress of OSCs incorporating plasmonic nanostructures. On the basis of unique features of OSCs, we exploit versatile resonance mechanisms acting on the absorption enhancement of OSCs; for example, Fabry-Pérot mode, quasi-guided mode, and plasmonic mode. Next, we present rigorous theoretical models to characterize optical properties of OSCs. The key physical quantities, as well as the pros and cons of different models, are described in detail. After that, we show some theoretical results to unveil the fundamental and device physics of plasmonic effects in typical OSC structures. Finally, we conclude the chapter and identify future opportunities in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945

    Article  Google Scholar 

  2. Brabec CJ, Gowrisanker S, Halls JJM, Laird D, Jia SJ, Williams SP (2010) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 22:3839–3856

    Article  Google Scholar 

  3. Deibel C, Dyakonov V (2010) Polymer-fullerene bulk heterojunction solar cells. Rep Prog Phys 73:096401

    Article  Google Scholar 

  4. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  Google Scholar 

  5. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  Google Scholar 

  6. Schuller JA, Barnard ES, Cai WS, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  Google Scholar 

  7. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Google Scholar 

  8. Tvingstedt K, Persson NK, Inganas O, Rahachou A, Zozoulenko IV (2007) Surface plasmon increase absorption in polymer photovoltaic cells. Appl Phys Lett 91:113514

    Article  Google Scholar 

  9. Bai WL, Gan QQ, Bartoli F, Zhang J, Cai LK, Huang YD, Song GF (2009) Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells. Opt Lett 34:3725–3727

    Article  Google Scholar 

  10. Bai WL, Gan QQ, Song GF, Chen LH, Kafafi Z, Bartoli F (2010) Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics. Opt Express 18:A620–A630

    Article  Google Scholar 

  11. Kang MG, Xu T, Park HJ, Luo XG, Guo LJ (2010) Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv Mater 22:4378–4383

    Article  Google Scholar 

  12. Min CJ, Li J, Veronis G, Lee JY, Fan SH, Peumans P (2010) Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings. Appl Phys Lett 96:133302

    Article  Google Scholar 

  13. Tsai SJ, Ballarotto M, Romero DB, Herman WN, Kan HC, Phaneuf RJ (2010) Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell. Opt Express 18:A528–A535

    Article  Google Scholar 

  14. Wang W, Wu SM, Reinhardt K, Lu YL, Chen SC (2010) Broadband light absorption enhancement in thin-film silicon solar cells. Nano Lett 10:2012–2018

    Article  Google Scholar 

  15. Sha WEI, Choy WCH, Chew WC (2010) A comprehensive study for the plasmonic thin-film solar cell with periodic structure. Opt Express 18:5993–6007

    Article  Google Scholar 

  16. Sha WEI, Choy WCH, Chew WC (2011) Angular response of thin-film organic solar cells with periodic metal back nanostrips. Opt Lett 36:478–480

    Article  Google Scholar 

  17. Sha WEI, Choy WCH, Wu Y, Chew WC (2012) Optical and electrical study of organic solar cells with a 2D grating anode. Opt Express 20:2572–2580

    Article  Google Scholar 

  18. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800

    Article  Google Scholar 

  19. Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113

    Article  Google Scholar 

  20. Morfa AJ, Rowlen KL, Reilly TH, Romero MJ, van de Lagemaat J (2008) Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl Phys Lett 92:013504

    Article  Google Scholar 

  21. Duche D, Torchio P, Escoubas L, Monestier F, Simon JJ, Flory F, Mathian G (2009) Improving light absorption in organic solar cells by plasmonic contribution. Sol Energy Mater Sol Cells 93:1377–1382

    Article  Google Scholar 

  22. Mendes MJ, Luque A, Tobias I, Marti A (2009) Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells. Appl Phys Lett 95:071105

    Article  Google Scholar 

  23. Akimov YA, Koh WS, Ostrikov K (2009) Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express 17:10195–10205

    Article  Google Scholar 

  24. Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113

    Article  Google Scholar 

  25. Mokkapati S, Beck FJ, Polman A, Catchpole KR (2009) Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Appl Phys Lett 95:053115

    Article  Google Scholar 

  26. Lee JY, Peumans P (2010) The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. Opt Express 18:10078–10087

    Article  Google Scholar 

  27. Kulkarni AP, Noone KM, Munechika K, Guyer SR, Ginger DS (2010) Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett 10:1501–1505

    Article  Google Scholar 

  28. Jung J, Sondergaard T, Pedersen TG, Pedersen K, Larsen AN, Nielsen BB (2011) Dyadic Green’s functions of thin films: applications within plasmonic solar cells. Phys Rev B 83:085419

    Article  Google Scholar 

  29. Diukman I, Tzabari L, Berkovitch N, Tessler N, Orenstein M (2011) Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer. Opt Express 19:A64–A71

    Article  Google Scholar 

  30. Sha WEI, Choy WCH, Liu YG, Chew WC (2011) Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells. Appl Phys Lett 99:113304

    Google Scholar 

  31. Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8:4391–4397

    Google Scholar 

  32. Pala RA, White J, Barnard E, Liu J, Brongersma ML (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21:3504–3509

    Article  Google Scholar 

  33. Sha WEI, Choy WCH, Chen YP, Chew WC (2011) Optical design of organic solar cell with hybrid plasmonic system. Opt Express 19:15908–15918

    Article  Google Scholar 

  34. Chopra KL, Paulson PD, Dutta V (2004) Thin-film solar cells: an overview. Prog Photovoltaics 12:69–92

    Article  Google Scholar 

  35. Tikhodeev SG, Yablonskii AL, Muljarov EA, Gippius NA, Ishihara T (2002) Quasiguided modes and optical properties of photonic crystal slabs. Phys Rev B 66:045102

    Article  Google Scholar 

  36. Hessel A, Oliner AA (1965) A new theory of Wood’s anomalies on optical gratings. Appl Optics 4:1275–1297

    Article  Google Scholar 

  37. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  Google Scholar 

  38. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257–2298

    Article  Google Scholar 

  39. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  40. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  41. Kawata S, Shalaev VM (2007) Nanophotonics with surface plasmons. Elsevier, Amsterdam

    Google Scholar 

  42. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  Google Scholar 

  43. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:899–903

    Article  Google Scholar 

  44. Matheu P, Lim SH, Derkacs D, McPheeters C, Yu ET (2008) Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl Phys Lett 93:113108

    Article  Google Scholar 

  45. Akimov YA, Koh WS, Sian SY, Ren S (2010) Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles? Appl Phys Lett 96:073111

    Article  Google Scholar 

  46. Grandidier J, Callahan DM, Munday JN, Atwater HA (2011) Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Adv Mater 23:1272–1276

    Google Scholar 

  47. Giannini V, Fernandez-Dominguez AI, Sonnefraud Y, Roschuk T, Fernandez-Garcia R, Maier SA (2010) Controlling light localization and light-matter interactions with nanoplasmonics. Small 6:2498–2507

    Article  Google Scholar 

  48. Chew WC, Jin J-M, Michielssen E, Song J (2001) Fast and efficient algorithms in computational electromagnetics. Artech House Publishers, Boston

    Google Scholar 

  49. Luebbers R, Hunsberger FP, Kunz KS, Standler RB, Schneider M (1990) A frequency-dependent finite-difference time-domain formulation for dispersive materials. IEEE Trans Electromagn Compat 32:222–227

    Article  Google Scholar 

  50. Kelley DF, Luebbers RJ (1996) Piecewise linear recursive convolution for dispersive media using FDTD. IEEE Trans Antennas Propag 44:792–797

    Article  Google Scholar 

  51. Veronis G, Fan S (2007) Overview of simulation techniques for plasmonic devices. In: Brongersma ML, Kik PG (eds) Surface plasmon nanophotonics. Springer, Dordrecht

    Google Scholar 

  52. Veysoglu ME, Shin RT, Kong JA (1993) A finite-difference time-domain analysis of wave scattering from periodic surfaces-oblique-incidence case. J Electromagn Waves Appl 7:1595–1607

    Article  Google Scholar 

  53. Sullivan DM (2000) Electromagnetic simulation using the FDTD method. Wiley-IEEE Press, New York

    Book  Google Scholar 

  54. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, Boston

    Google Scholar 

  55. Jin J-M (2002) The finite element method in electromagnetics, 2nd edn. Wiley-IEEE Press, New York

    Google Scholar 

  56. Chew WC, Tong MS, Hu B (2008) Integral equation methods for electromagnetic and elastic waves. Morgan and Claypool Publishers, San Rafael

    Google Scholar 

  57. Brandt A (1982) Guide to multigrid development. Lecture notes in mathematics, vol 960, pp 220–312

    Google Scholar 

  58. Davis TA, Duff IS (1997) An unsymmetric-pattern multifrontal method for sparse LU factorization. SIAM J Matrix Anal Appl 18:140–158

    Article  MathSciNet  MATH  Google Scholar 

  59. Chew WC (1995) Waves and fields in inhomogenous media. Wiley-IEEE Press, New York

    Google Scholar 

  60. Chew WC, Jin JM, Lu CC, Michielssen E, Song JMM (1997) Fast solution methods in electromagnetics. IEEE Trans Antennas Propag 45:533–543

    Article  Google Scholar 

  61. Brandt A (1991) Multilevel computations of integral-transforms and particle interactions with oscillatory kernels. Comput Phys Commun 65:24–38

    Article  MATH  Google Scholar 

  62. Phillips JR, White JK (1997) A precorrected-FFT method for electrostatic analysis of complicated 3-D structures. IEEE Trans Comput-Aided Des Integr Circuits Syst 16:1059–1072

    Article  Google Scholar 

  63. Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73:325–348

    Article  MathSciNet  MATH  Google Scholar 

  64. Song JM, Lu CC, Chew WC (1997) Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans Antennas Propag 45:1488–1493

    Article  Google Scholar 

  65. Bienstman P, Baets R (2001) Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers. Opt Quantum Electron 33:327–341

    Article  Google Scholar 

  66. Moharam MG, Grann EB, Pommet DA, Gaylord TK (1995) Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A 12:1068–1076

    Article  Google Scholar 

  67. Yonekura J, Ikeda M, Baba T (1999) Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method. J Lightwave Technol 17:1500–1508

    Article  Google Scholar 

  68. Johnson SG, Joannopoulos JD (2001) Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt Express 8:173–190

    Article  Google Scholar 

  69. Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14:302–307

    MATH  Google Scholar 

  70. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic-waves. J Comput Phys 114:185–200

    Article  MathSciNet  MATH  Google Scholar 

  71. Chew WC, Weedon WH (1994) A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw Opt Technol Lett 7:599–604

    Article  Google Scholar 

  72. Mur G (1981) Absorbing boundary-conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans Electromagn Compat 23:377–382

    Article  Google Scholar 

  73. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491–1499

    Article  Google Scholar 

  74. Kern AM, Martin OJF (2009) Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. J Opt Soc Am A 26:732–740

    Article  MathSciNet  Google Scholar 

  75. Glisson AW, Wilton DR (1980) Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces. IEEE Trans Antennas Propag 28:593–603

    Article  MathSciNet  MATH  Google Scholar 

  76. Catedra MF, Gago E, Nuno L (1989) A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform. IEEE Trans Antennas Propag 37:528–537

    Article  Google Scholar 

  77. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bur Stand 49:409–436

    Article  MathSciNet  MATH  Google Scholar 

  78. Vandervorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13:631–644

    Article  MathSciNet  Google Scholar 

  79. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley-Interscience, New York

    Google Scholar 

  80. Tsang L, Kong JA, Ding KH (2000) Scattering of electromagnetic waves: theories and applications. Wiley, New York

    Google Scholar 

  81. Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Optics 37:5271–5283

    Article  Google Scholar 

  82. Palik ED (1998) Handbook of optical constants of solids. Academic Press, London

    Google Scholar 

  83. Choy WCH, Fong HH (2008) Comprehensive investigation of absolute optical properties of organic materials. J Phys D Appl Phys 41:155109

    Article  Google Scholar 

  84. Wei QH, Su KH, Durant S, Zhang X (2004) Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett 4:1067–1071

    Article  Google Scholar 

  85. Jain PK, El-Sayed MA (2007) Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett 7:2854–2858

    Article  Google Scholar 

  86. Prade B, Vinet JY, Mysyrowicz A (1991) Guided optical waves in planar heterostructures with negative dielectric-constant. Phys Rev B 44:13556–13572

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the grants (Nos. 712010, 711609, and 711511) from the Research Grant Council (RGC) of Hong Kong, the grant (No. 10401466) from the University Grant Council (UGC) of the University of Hong Kong, and the Small Project Funding of the University of Hong Kong (No. 201109176133). This project is also supported by the UGC of Hong Kong (No. AoE/P-04/08), by The National Natural Science Foundation of China (No. 61201122), and in part by a Hong Kong UGC Special Equipment Grant (SEG HKU09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei E. I. Sha .

Editor information

Editors and Affiliations

Appendix—Biconjugate Gradient Stabilized Algorithm

Appendix—Biconjugate Gradient Stabilized Algorithm

The resulting VIE matrix equation can be expressed as

$$\begin{aligned} Ax=b \end{aligned}$$

The procedure of the biconjugate gradient stabilized (BI-CGSTAB) algorithm is given as follows:

Give an initial guess \(x_0\), we have

$$\begin{aligned}&r_0=b-Ax_0,\,\hat{r}_0=r_0\\&\rho _0=\alpha =\omega _0=1 \\&v_0=p_0=0 \end{aligned}$$

Iterate for \(i=1,2,\ldots ,n\)

$$\begin{aligned} \rho _i&=\langle \hat{r}_0,r_{i-1}\rangle \\ \beta&=\left(\rho _i/\rho _{i-1}\right)\left(\alpha /\omega _{i-1}\right)\\ p_i&=r_{i-1}+\beta (p_{i-1}-\omega _{i-1}v_{i-1})\\ v_i&=Ap_i\\ \alpha&=\rho _i/\langle \hat{r}_0,v_{i}\rangle \\ s&=r_{i-1}-\alpha v_i\\ t&=As\\ \omega _i&=\langle t,s\rangle /\langle t,t\rangle \\ x_i&=x_{i-1}+\alpha p_i+\omega _i s\\ r_i&=s-\omega _i t \end{aligned}$$

Terminate when

$$\begin{aligned} \frac{||r_{i}||_2}{||b||_2}<\eta \end{aligned}$$

where \(\eta \) is the tolerance that specifies the desired accuracy of solution.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Sha, W.E.I., Choy, W.C.H., Chew, W.C. (2013). Theoretical Studies of Plasmonic Effects in Organic Solar Cells. In: Choy, W. (eds) Organic Solar Cells. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4823-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4823-4_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4822-7

  • Online ISBN: 978-1-4471-4823-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics