Skip to main content
Log in

Sharp bilinear decomposition for products of both anisotropic Hardy spaces and their dual spaces with its applications to endpoint boundedness of commutators

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let \(\vec a: = ({a_1}, \ldots ,{a_n}) \in {[1,\infty )^n},\,p \in (0,1)\), and α:= 1/p − 1. For any x ∈ ℝn and t ∈ [0, ∞), let

$${\Phi _p}(x,t): = \left\{ {\matrix{{{t \over {1 + {{(t[x]_{\vec a}^\nu )}^{1 - p}}}}} \hfill & {{\rm{if}}\,\nu \alpha \notin \mathbb{N},} \hfill \cr {{t \over {1 + {{(t[x]_{\vec a}^\nu )}^{1 - p}}{{[\log ({\rm{e}} + |x{|_{\vec a}})]}^p}}}} \hfill & {{\rm{if}}\,\nu \alpha \in \mathbb{N},} \hfill \cr } } \right.$$

where \({[ \cdot ]_{\vec a}}: = 1 + | \cdot {|_{\vec a}},\,| \cdot {|_{\vec a}}\) denotes the anisotropic quasi-homogeneous norm with respect to \({\vec a}\), and ν:= a1 +...+ an. Let \(H_{\vec a}^p({\mathbb{R}^n})\), \({\cal L}_\alpha ^{\vec a}({\mathbb{R}^n})\), and \(H_{\vec a}^{{\Phi _p}}({\mathbb{R}^n})\) be, respectively, the anisotropic Hardy space, the anisotropic Campanato space, and the anisotropic Musielak-Orlicz Hardy space associated with Φp on ℝn. In this article, via first establishing the wavelet characterization of anisotropic Campanato spaces, we prove that for any \(f \in H_{\vec a}^p({\mathbb{R}^n})\) and \(g \in {\cal L}_\alpha ^{\vec a}({\mathbb{R}^n})\), the product of f and g can be decomposed into S(f, g) + T(f, g) in the sense of tempered distributions, where S is a bilinear operator bounded from \(H_{\vec a}^p({\mathbb{R}^n}) \times {\cal L}_\alpha ^{\vec a}({\mathbb{R}^n})\) to L1(ℝn) and T is a bilinear operator bounded from \(H_{\vec a}^p({\mathbb{R}^n}) \times {\cal L}_\alpha ^{\vec a}({\mathbb{R}^n})\) to \(H_{\vec a}^{{\Phi _p}}({\mathbb{R}^n})\). Moreover, this bilinear decomposition is sharp in the dual sense that any \({\cal Y} \subset H_{\vec a}^{{\Phi _p}}({\mathbb{R}^n})\) that fits into the above bilinear decomposition should satisfy \({({L^1}({\mathbb{R}^n}) + {\cal Y})^ * } = {({L^1}({\mathbb{R}^n}) + H_{\vec a}^{{\Phi _p}}({\mathbb{R}^n}))^ * }\). As applications, for any non-constant \(b \in {\cal L}_\alpha ^{\vec a}({\mathbb{R}^n})\) and any sublinear operator T satisfying some mild bounded assumptions, we find the largest subspace of \(H_{\vec a}^p({\mathbb{R}^n})\), denoted by \(H_{\vec a,b}^p({\mathbb{R}^n})\), such that the commutator [b, T] is bounded from \(H_{\vec a,b}^p({\mathbb{R}^n})\) to L1(ℝn). In addition, when T is an anisotropic Calderón-Zygmund operator, the boundedness of [b, T] from \(H_{\vec a,b}^p({\mathbb{R}^n})\) to L1(ℝn)(or to \(H_{\vec a}^1({\mathbb{R}^n})\)) is also presented. The key of their proofs is the wavelet characterization of function spaces under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astala K, Iwaniec T, Koskela P, et al. Mappings of BMO-bounded distortion. Math Ann, 2000, 317: 703–726

    Article  MathSciNet  MATH  Google Scholar 

  2. Auscher P, Hytönen T. Orthonormal bases of regular wavelets in spaces of homogeneous type. Appl Comput Harmon Anal, 2013, 34: 266–296

    Article  MathSciNet  MATH  Google Scholar 

  3. Ball J M. Convexity conditions and existence theorems in nonlinear elasticity. Arch Ration Mech Anal, 1976, 63: 337–403

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrios B, Betancor J J. Characterizations of anisotropic Besov spaces. Math Nachr, 2011, 284: 1796–1819

    Article  MathSciNet  MATH  Google Scholar 

  5. Besov O V, Il’in V P, Lizorkin P I. The Lp-estimates of a certain class of non-isotropically singular integrals (in Russian). Dokl Akad Nauk SSSR, 1966, 169: 1250–1253

    MathSciNet  Google Scholar 

  6. Bonami A, Cao J, Ky L D, et al. Multiplication between Hardy spaces and their dual spaces. J Math Pures Appl (9), 2019, 131: 130–170

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonami A, Feuto J. Products of functions in Hardy and Lipschitz or BMO spaces. In: Recent Developments in Real and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Boston: Birkhäuser, 2010, 57–71

    Chapter  MATH  Google Scholar 

  8. Bonami A, Feuto J, Grellier S. Endpoint for the div-curl lemma in Hardy spaces. Publ Mat, 2010, 54: 341–358

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonami A, Feuto J, Grellier S, et al. Atomic decomposition and weak factorization in generalized Hardy spaces of closed forms. Bull Sci Math, 2007, 141: 676–702

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonami A, Grellier S, Ky L D. Paraproducts and products of functions in BMO(ℝn) and H1(ℝn) through wavelets. J Math Pures Appl (9), 2012, 97: 230–241

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonami A, Iwaniec T, Jones P, et al. On the product of functions in BMO and H1. Ann Inst Fourier (Grenoble), 2007, 57: 1405–1439

    Article  MathSciNet  MATH  Google Scholar 

  12. Bonami A, Ky L D. Factorization of some Hardy-type spaces of holomorphic functions. C R Acad Sci Ser I Math, 2014, 352: 817–821

    MathSciNet  MATH  Google Scholar 

  13. Bonami A, Liu L G, Yang D C, et al. Pointwise multipliers of Zygmund classes on ℝn. J Geom Anal, 2021, 31: 8879–8902

    Article  MathSciNet  MATH  Google Scholar 

  14. Borup L, Nielsen M. On anisotropic Triebel-Lizorkin type spaces, with applications to the study of pseudo-differential operators. J Funct Spaces Appl, 2008, 6: 107–154

    Article  MathSciNet  MATH  Google Scholar 

  15. Bownik M. Anisotropic Hardy spaces and wavelets. Mem Amer Math Soc, 2003, 164: 781, vi+122pp

    MathSciNet  MATH  Google Scholar 

  16. Bownik M. Atomic and molecular decompositions of anisotropic Besov spaces. Math Z, 2005, 250: 539–571

    Article  MathSciNet  MATH  Google Scholar 

  17. Bownik M. Anisotropic Triebel-Lizorkin spaces with doubling measures. J Geom Anal, 2007, 17: 387–424

    Article  MathSciNet  MATH  Google Scholar 

  18. Bownik M, Ho K-P. Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans Amer Math Soc, 2006, 358: 1469–1510

    Article  MathSciNet  MATH  Google Scholar 

  19. Bownik M, Li B D, Yang D C, et al. Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ Math J, 2008, 57: 3065–3100

    Article  MathSciNet  MATH  Google Scholar 

  20. Bownik M, Li B D, Yang D C, et al. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math Nachr, 2010, 283: 392–442

    Article  MathSciNet  MATH  Google Scholar 

  21. Bownik M, Wang L-A D. Fourier transform of anisotropic Hardy spaces. Proc Amer Math Soc, 2013, 141: 2299–2308

    Article  MathSciNet  MATH  Google Scholar 

  22. Bownik M, Wang L-A D. A partial differential equation characterization of anisotropic Hardy spaces. Math Nachr, 2023, 296: 2258–2275

    Article  MathSciNet  MATH  Google Scholar 

  23. Calderón A P, Torchinsky A. Parabolic maximal functions associated with a distribution. Adv Math, 1975, 16: 1–64

    Article  MathSciNet  MATH  Google Scholar 

  24. Campanato S. Proprietà di una famiglia di spazi funzionali. Ann Scuola Norm Sup Pisa (3), 1964, 18: 137–160

    MathSciNet  MATH  Google Scholar 

  25. Cao J, Ky L D, Yang D C. Bilinear decompositions of products of local Hardy and Lipschitz or BMO spaces through wavelets. Commun Contemp Math, 2018, 20: 1750025, 30pp

    Article  MathSciNet  MATH  Google Scholar 

  26. Cleanthous G, Georgiadis A G. Mixed-norm α-modulation spaces. Trans Amer Math Soc, 2020, 373: 3323–3356

    Article  MathSciNet  MATH  Google Scholar 

  27. Cleanthous G, Georgiadis A G. Product (α1, α2)-modulation spaces. Sci China Math, 2022, 65: 1599–1640

    Article  MathSciNet  MATH  Google Scholar 

  28. Cleanthous G, Georgiadis A G, Nielsen M. Anisotropic mixed-norm Hardy spaces. J Geom Anal, 2017, 27: 2758–2787

    Article  MathSciNet  MATH  Google Scholar 

  29. Cleanthous G, Georgiadis A G, Nielsen M. Molecular decomposition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators. Appl Comput Harmon Anal, 2019, 47: 447–480

    Article  MathSciNet  MATH  Google Scholar 

  30. Cleanthous G, Georgiadis A G, Nielsen M. Fourier multipliers on anisotropic mixed-norm spaces of distributions. Math Scand, 2019, 124: 289–304

    Article  MathSciNet  MATH  Google Scholar 

  31. Coifman R R, Lions P-L, Meyer Y, et al. Compensated compactness and Hardy spaces. J Math Pures Appl (9), 1993, 72: 247–286

    MathSciNet  MATH  Google Scholar 

  32. Coifman R R, Weiss G. Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes (in French). Etude de Certaines Integrales Singulières. Lecture Notes in Mathematics, vol. 242. Berlin-New York: Springer-Verlag, 1971

    MATH  Google Scholar 

  33. Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569–645

    Article  MathSciNet  MATH  Google Scholar 

  34. Dahlke S, Schneider C. Anisotropic Besov regularity of parabolic PDEs. Pure Appl Funct Anal, 2023, 8: 457–476

    MathSciNet  MATH  Google Scholar 

  35. Fabes E B, Rivière N M. Singular integrals with mixed homogeneity. Studia Math, 1966, 27: 19–38

    Article  MathSciNet  MATH  Google Scholar 

  36. Farwig R, Sohr H. Weighted Lq-theory for the Stokes resolvent in exterior domains. J Math Soc Japan, 1997, 49: 251–288

    Article  MathSciNet  MATH  Google Scholar 

  37. Fefferman C, Stein E M. Hp spaces of several variables. Acta Math, 1972, 129: 137–193

    Article  MathSciNet  MATH  Google Scholar 

  38. Fu X, Yang D C, Liang Y Y. Products of functions in BMO (X) and \(H_{{\rm{at}}}^1({\cal X})\) via wavelets over spaces of homogeneous type. J Fourier Anal Appl, 2017, 23: 919–990

    Article  MathSciNet  MATH  Google Scholar 

  39. Garrigós G, Tabacco A. Wavelet decompositions of anisotropic Besov spaces. Math Nachr, 2002, 239/240: 80–102

    Article  MathSciNet  MATH  Google Scholar 

  40. Georgiadis A G, Johnsen J, Nielsen M. Wavelet transforms for homogeneous mixed-norm Triebel-Lizorkin spaces. Monatsh Math, 2017, 183: 587–624

    Article  MathSciNet  MATH  Google Scholar 

  41. Georgiadis A G, Kyriazis G, Petrushev P. Product Besov and Triebel-Lizorkin spaces with application to nonlinear approximation. Constr Approx, 2021, 53: 39–83

    Article  MathSciNet  MATH  Google Scholar 

  42. Georgiadis A G, Nielsen M. Pseudodifferential operators on mixed-norm Besov and Triebel-Lizorkin spaces. Math Nachr, 2016, 289: 2019–2036

    Article  MathSciNet  MATH  Google Scholar 

  43. Grafakos L. Classical Fourier Analysis, 3rd ed. Graduate Texts in Mathematics, vol. 249. New York: Springer, 2014

    Book  MATH  Google Scholar 

  44. Helein F. Regularity of weakly harmonic maps from a surface into a manifold with symmetries. Manuscripta Math, 1991, 70: 203–218

    Article  MathSciNet  MATH  Google Scholar 

  45. Ho K-P. Anisotropic function spaces. PhD thesis. St. Louis: Washington University, 2002

    Google Scholar 

  46. Ho K-P. Frames associated with expansive matrix dilations. Collect Math, 2003, 54: 217–254

    MathSciNet  MATH  Google Scholar 

  47. Ho K-P. Mixed norm Lebesgue spaces with variable exponents and applications. Riv Math Univ Parma (NS), 2018, 9: 21–44

    MathSciNet  MATH  Google Scholar 

  48. Huang L, Liu J, Yang D C, et al. Atomic and Littlewood-Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications. J Geom Anal, 2019, 29: 1991–2067

    Article  MathSciNet  MATH  Google Scholar 

  49. Huang L, Liu J, Yang D C, et al. Dual spaces of anisotropic mixed-norm Hardy spaces. Proc Amer Math Soc, 2019, 147: 1201–1215

    Article  MathSciNet  MATH  Google Scholar 

  50. Huang L, Liu J, Yang D C, et al. Real-variable characterizations of new anisotropic mixed-norm Hardy spaces. Commun Pure Appl Anal, 2020, 19: 3033–3082

    Article  MathSciNet  MATH  Google Scholar 

  51. Huang L, Yang D C. On function spaces with mixed norms—a survey. J Math Study, 2021, 54: 262–336

    Article  MathSciNet  MATH  Google Scholar 

  52. Huang L, Yang D C, Yuan W. Anisotropic mixed-norm Campanato-type spaces with applications to duals of anisotropic mixed-norm Hardy spaces. Banach J Math Anal, 2021, 15: 62, 36pp

    Article  MathSciNet  MATH  Google Scholar 

  53. Huy D Q, Ky L D. Weighted Hardy space estimates for commutators of Calderón-Zygmund operators. Vietnam J Math, 2021, 49: 1065–1077

    Article  MathSciNet  MATH  Google Scholar 

  54. Iwaniec T, Sbordone C. Quasiharmonic fields. Ann Inst H Poincaré Anal Non Linéaire, 2001, 18: 519–572

    Article  MathSciNet  MATH  Google Scholar 

  55. John F, Nirenberg L. On functions of bounded mean oscillation. Comm Pure Appl Math, 1961, 14: 415–426

    Article  MathSciNet  MATH  Google Scholar 

  56. Johnsen J, Munch Hansen S, Sickel W. Characterisation by local means of anisotropic Lizorkin-Triebel spaces with mixed norms. Z Anal Anwend, 2013, 32: 257–277

    Article  MathSciNet  MATH  Google Scholar 

  57. Johnsen J, Munch Hansen S, Sickel W. Anisotropic Lizorkin-Triebel spaces with mixed norms—traces on smooth boundaries. Math Nachr, 2015, 288: 1327–1359

    Article  MathSciNet  MATH  Google Scholar 

  58. Kolmogorov A N, Fomin S V. Measure, Lebesgue Integrals, and Hilbert Space. New York-London: Academic Press, 1961

    Google Scholar 

  59. Kühn T, Sickel W, Ullrich T. How anisotropic mixed smoothness affects the decay of singular numbers for Sobolev embeddings. J Complexity, 2021, 63: 101523, 37pp

    Article  MathSciNet  MATH  Google Scholar 

  60. Ky L D. Bilinear decompositions and commutators of singular integral operators. Trans Amer Math Soc, 2013, 365: 2931–2958

    Article  MathSciNet  MATH  Google Scholar 

  61. Ky L D. New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equations Operator Theory, 2014, 78: 115–150

    Article  MathSciNet  MATH  Google Scholar 

  62. Ky L D. Bilinear decompositions for the product space \(H_L^1 \times {\rm{BM}}{{\rm{O}}_L}\). Math Nachr, 2014, 287: 1288–1297

    Article  MathSciNet  Google Scholar 

  63. Ky L D. On the product of functions in BMO and H1 over spaces of homogeneous type. J Math Anal Appl, 2015, 425: 807–817

    Article  MathSciNet  MATH  Google Scholar 

  64. Ky L D. Endpoint estimates for commutators of singular integrals related to Schroödinger operators. Rev Mat Iberoam, 2015, 31: 1333–1373

    Article  MathSciNet  MATH  Google Scholar 

  65. Lee M-Y, Lin C-C, Lin Y-C. A wavelet characterization for the dual of weighted Hardy spaces. Proc Amer Math Soc, 2009, 137: 4219–4225

    Article  MathSciNet  MATH  Google Scholar 

  66. Lemariá-Rieusset P G. Recent Developments in the Navier-Stokes Problem. Research Notes in Mathematics, vol. 431. Boca Raton: Chapman & Hall/CRC, 2002

    Book  MATH  Google Scholar 

  67. Li B D, Bownik M, Yang D C. Littlewood-Paley characterization and duality of weighted anisotropic product Hardy spaces. J Funct Anal, 2014, 266: 2611–2661

    Article  MathSciNet  MATH  Google Scholar 

  68. Li B D, Yang D C, Yuan W. Anisotropic Hardy spaces of Musielak-Orlicz type with applications to boundedness of sublinear operators. Scientific World J, 2014, 2014: 306214, 19pp

    Google Scholar 

  69. Liu J, Haroske D D, Yang D C, et al. Dual spaces and wavelet characterizations of anisotropic Musielak-Orlicz Hardy spaces. Appl Comput Math, 2020, 19: 106–131

    MathSciNet  MATH  Google Scholar 

  70. Liu L G, Chang D-C, Fu X, et al. Endpoint boundedness of commutators on spaces of homogeneous type. Appl Anal, 2017, 96: 2408–2433

    Article  MathSciNet  MATH  Google Scholar 

  71. Liu L G, Yang D C, Yuan W. Bilinear decompositions for products of Hardy and Lipschitz spaces on spaces of homogeneous type. Dissertationes Math, 2018, 533: 1–93

    Article  MathSciNet  MATH  Google Scholar 

  72. Meyer Y, Coifman R R. Wavelets, Calderón-Zygmund and Multilinear Operators. Advanced Mathematics. Cambridge: Cambridge University Press, 1997

    MATH  Google Scholar 

  73. Murat F. Compacité par compensation. Ann Sc Norm Super Pisa Cl Sci (4), 1978, 5: 489–507

    MATH  Google Scholar 

  74. Müller S. Weak continuity of determinants and nonlinear elasticity. C R Acad Sci Paris Ser I Math, 1988, 307: 501–506

    MathSciNet  MATH  Google Scholar 

  75. Müller S. Higher integrability of determinants and weak convergence in L1. J Reine Angew Math, 1990, 412: 20–34

    MathSciNet  MATH  Google Scholar 

  76. Nakai E, Yabuta K. Pointwise multipliers for functions of bounded mean oscillation. J Math Soc Japan, 1985, 37: 207–218

    Article  MathSciNet  MATH  Google Scholar 

  77. Paluszyński M. Characterization of Lipschitz spaces via the commutator operator of Coifman, Rochberg and Weiss: A multiplier theorem for the semigroup of contractions. PhD Thesis. St. Louis: Washington University, 1992

    Google Scholar 

  78. Pérez C. Endpoint estimates for commutators of singular integral operators. J Funct Anal, 1995, 128: 163–185

    Article  MathSciNet  MATH  Google Scholar 

  79. Soardi P M. On nonisotropic Lipschitz spaces. In: Harmonic Analysis. Lecture Notes in Mathematics, vol. 992. Berlin: Springer, 1983, 115–138

    Chapter  Google Scholar 

  80. Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Monographs in Harmonic Analysis III. Princeton: Princeton University Press, 1993

    MATH  Google Scholar 

  81. Stein E M, Wainger S. Problems in harmonic analysis related to curvature. Bull Amer Math Soc, 1978, 84: 1239–1295

    Article  MathSciNet  MATH  Google Scholar 

  82. Tartar L. Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium. Research Notes in Mathematics, vol. 39. Boston-Mass-London: Pitman, 1979, 136–212

    Google Scholar 

  83. Yang D C, Liang Y Y, Ky L D. Real-Variable Theory of Musielak-Orlicz Hardy Spaces. Lecture Notes in Mathematics, vol. 2182. Cham: Springer-Verlag, 2017

    MATH  Google Scholar 

  84. Yang D C, Yuan W, Zhang Y Y. Bilinear decomposition and divergence-curl estimates on products related to local Hardy spaces and their dual spaces. J Funct Anal, 2021, 280: 108796, 74pp

    Article  MathSciNet  MATH  Google Scholar 

  85. Zhang Y Y, Yang D C, Yuan W. Real-variable characterizations of local Orlicz-slice Hardy spaces with application to bilinear decompositions. Commun Contemp Math, 2022, 24: 2150004, 35pp

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 12001527, 11971058 and 12071197), the Natural Science Foundation of Jiangsu Province (Grant No. BK20200647) and the Postdoctoral Science Foundation of China (Grant No. 2021M693422). The authors thank Professor Jun Cao for several helpful conversations on Lemma 2.11 which plays a key role in the proof of Theorem 3.10 and is of independent interest. They also thank the referees for their careful reading and valuable remarks which indeed improve the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yang, D. & Zhang, M. Sharp bilinear decomposition for products of both anisotropic Hardy spaces and their dual spaces with its applications to endpoint boundedness of commutators. Sci. China Math. (2023). https://doi.org/10.1007/s11425-023-2153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11425-023-2153-y

Keywords

MSC(2020)

Navigation