Skip to main content
Log in

The Heisenberg double of the quantum Euclidean group and its representations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The Heisenberg double Dq(E2) of the quantum Euclidean group \({{\cal O}_q}({E_2})\) is the smash product of \({{\cal O}_q}({E_2})\) with its Hopf dual \({U_q}({e_2})\). For the algebra Dq(E2), explicit descriptions of its prime, primitive and maximal spectra are obtained. All the prime factors of Dq(E2) are presented as generalized Weyl algebras. As a result, we obtain that the algebra Dq(E2) has no finite-dimensional representations, and Dq(E2) cannot have a Hopf algebra structure. The automorphism groups of the quantum Euclidean group and its Heisenberg double are determined. Some centralizers are explicitly described via generators and defining relations. This enables us to give a classification of simple weight modules and the so-called a-weight modules over the algebra Dq(E2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aziziheris K, Fakhri H, Laheghi S. The quantum group SL *q (2) and quantum algebra Uq(sl *2 ) based on a new associative multiplication on 2 × 2 matrices. J Math Phys, 2020, 61: 063504

    Article  MathSciNet  MATH  Google Scholar 

  2. Bavula V V. Simple D[X,Y; σ, a]-modules. Ukrainian Math J, 1992, 44: 1500–1511

    Article  MathSciNet  Google Scholar 

  3. Bavula V V. Generalized Weyl algebras and their representations. St Petersburg Math J, 1993, 4: 71–92

    MathSciNet  MATH  Google Scholar 

  4. Bavula V V. Generalized Weyl algebras and diskew polynomial rings. J Algebra Appl, 2020, 19: 2050194

    Article  MathSciNet  MATH  Google Scholar 

  5. Bavula V V, van Oystaeyen F. The simple modules of certain generalized crossed products. J Algebra, 1997, 194: 521–566

    Article  MathSciNet  MATH  Google Scholar 

  6. Brzeziński T. Integral calculus on Eq(2). SIGMA Symmetry Integrability Geom Methods Appl, 2010, 6: 040

    MATH  Google Scholar 

  7. Celeghini E, Giachetti R, Sorace E, et al. Three-dimensional quantum groups from contractions of SU(2)q. J Math Phys, 1990, 31: 2548–2551

    Article  MathSciNet  MATH  Google Scholar 

  8. Chari V, Pressley A. A Guide to Quantum Groups. Cambridge: Cambridge University Press, 1994

    MATH  Google Scholar 

  9. Dixmier J. Représentations irréductibles des algèbres de Lie nilpotentes. An Acad Brasil Ciênc, 1963, 35: 491–519

    MATH  Google Scholar 

  10. Goodearl K R, Letzter E S. Prime and primitive spectra of multiparameter quantum affine spaces. In: Dlab V, Marki L, eds. Trends in Ring Theory. Canadian Mathematical Society Conference Proceedings Series, vol. 22. Providence: Amer Math Soc, 1998, 39–58

    Google Scholar 

  11. Jacobson N. The Theory of Rings. Providence: Amer Math Soc, 1943

    Book  MATH  Google Scholar 

  12. Klimyk A, Schmüdgen K. Quantum Groups and Their Representations. New York: Springer, 1997

    Book  MATH  Google Scholar 

  13. Koelink H T. The quantum group of plane motions and the Hahn-Exton q-Bessel function. Duke Math J, 1994, 76: 483–508

    Article  MathSciNet  MATH  Google Scholar 

  14. Korogodskii L I, Vaksman L L. An algebra of bounded functions on the quantum group of the motions of the plane, and q-analogues of Bessel functions. Sov Math Dokl, 1989, 39: 173–177

    MathSciNet  Google Scholar 

  15. Launois S, Lenagan T H. Primitive ideals and automorphisms of quantum matrices. Algebr Represent Theor, 2007, 10: 339–365

    Article  MathSciNet  MATH  Google Scholar 

  16. Launois S, Lenagan T H. Automorphsims of quantum matrices. Glasg Math J, 2013, 55: 89–100

    Article  MathSciNet  MATH  Google Scholar 

  17. Lu J H. On the Drinfeld double and the Heisenberg double of a Hopf algebra. Duke Math J, 1994, 74: 763–776

    Article  MathSciNet  MATH  Google Scholar 

  18. Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Regional Conference Series in Mathematics, vol. 82. Providence: Amer Math Soc, 1993

    MATH  Google Scholar 

  19. Noels J. An algebraic framework for harmonic analysis on the quantum E(2) group. Comm Algebra, 2002, 30: 693–743

    Article  MathSciNet  MATH  Google Scholar 

  20. Rigal L. Spectrum of the quantized Weyl algebra. Beitr Algebra Geom, 1996, 37: 119–148

    MATH  Google Scholar 

  21. Tao W-Q. On representations of the centrally extended Heisenberg double of SL2. J Math Phys, 2021, 62: 071702

    Article  MATH  Google Scholar 

  22. Woronowicz S L. Quantum E(2) group and its Pontryagin dual. Lett Math Phys, 1991, 23: 251–263

    Article  MathSciNet  MATH  Google Scholar 

  23. Woronowicz S L. Operator equalities related to the quantum E(2) group. Comm Math Phys, 1992, 144: 417–428

    Article  MathSciNet  MATH  Google Scholar 

  24. Woronowicz S L. Quantum SU(2) and E(2) groups. Contraction procedure. Comm Math Phys, 1992, 149: 637–652

    Article  MathSciNet  MATH  Google Scholar 

  25. Yakimov M. The Launois-Lenagan conjecture. J Algebra, 2013, 392: 1–9

    Article  MathSciNet  MATH  Google Scholar 

  26. Yakimov M. Rigidity of quantum tori and the Andruskiewitsch-Dumas conjecture. Selecta Math (NS), 2014, 20: 421–464

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11601167)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Qing Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, WQ. The Heisenberg double of the quantum Euclidean group and its representations. Sci. China Math. 66, 1713–1736 (2023). https://doi.org/10.1007/s11425-021-2043-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-2043-7

Keywords

MSC(2020)

Navigation