Skip to main content
Log in

On the Cauchy problem and peakons of a two-component Novikov system

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study a two-component Novikov system, which is integrable and can be viewed as a two-component generalization of the Novikov equation with cubic nonlinearity. The primary goal of this paper is to understand how multi-component equations, nonlinear dispersive terms and other nonlinear terms affect the dispersive dynamics and the structure of the peaked solitons. We establish the local well-posedness of the Cauchy problem in Besov spaces Bsp,r with 1 ⩽ p, r ⩽ + ∞, s > max{1 + 1/p, 3/2} and Sobolev spaces Hs(ℝ) with s > 3/2, and the method is based on the estimates for transport equations and new invariant properties of the system. Furthermore, the blow-up and wave-breaking phenomena of solutions to the Cauchy problem are studied. A blow-up criterion on solutions of the Cauchy problem is demonstrated. In addition, we show that this system admits single-peaked solitons and multi-peaked solitons on the whole line, and the single-peaked solitons on the circle, which are the weak solutions in both senses of the usual weak form and the weak Lax-pair form of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beals R, Sattinger D-H, Szmigielski J. Inverse scattering solutions of the Hunter-Saxton equation. Appl Anal, 2001, 78: 255–269

    MathSciNet  MATH  Google Scholar 

  2. Camassa R, Holm D-D. An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71: 1661–1664

    MathSciNet  MATH  Google Scholar 

  3. Chen M, Liu S-Q, Zhang Y-J. A two-component generalization of the two-component equation and its solutions. Lett Math Phys, 2006, 75: 1–15

    MathSciNet  MATH  Google Scholar 

  4. Chou K-S, Qu C-Z. Integrable equations arising from motions of plane curves I. Phys D, 2002, 162: 9–33

    MathSciNet  MATH  Google Scholar 

  5. Constantin A. Existence of permanent and breaking waves for a shallow water equation: A geometric approach. Ann Inst Fourier (Grenoble), 2000, 50: 321–362

    MathSciNet  MATH  Google Scholar 

  6. Constantin A. The trajectories of particles in Stokes waves. Invent Math, 2006, 166: 523–535

    MathSciNet  MATH  Google Scholar 

  7. Constantin A, Escher J. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math, 1998, 181: 229–243

    MathSciNet  MATH  Google Scholar 

  8. Constantin A, Escher J. Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation. Comm Pure Appl Math, 1998, 51: 475–504

    MathSciNet  MATH  Google Scholar 

  9. Constantin A, Escher J. Global existence and blow-up for a shallow water equation. Ann Sc Norm Super Pisa Cl Sci (5), 1998, 26: 303–328

    MathSciNet  MATH  Google Scholar 

  10. Constantin A, Ivanov R-I. On an integrable two-component Camassa-Holm shallow water system. Phys Lett A, 2008, 372: 7129–7132

    MathSciNet  MATH  Google Scholar 

  11. Constantin A, Lannes D. The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch Ration Mech Anal, 2009, 192: 165–186

    MathSciNet  MATH  Google Scholar 

  12. Constantin A, Molinet L. Orbital stability of solitary waves for a shallow water equation. Phys D, 2001, 157: 75–89

    MathSciNet  MATH  Google Scholar 

  13. Constantin A, Strauss W. Stability of peakons. Comm Pure Appl Math, 2000, 53: 603–610

    MathSciNet  MATH  Google Scholar 

  14. Danchin R. A few remarks on the Camassa-Holm equation. Differential Integral Equations, 2001, 14: 953–988

    MathSciNet  MATH  Google Scholar 

  15. Danchin R. A note on well-posedness for Camassa-Holm equation. J Differential Equations, 2003, 192: 429–444

    MathSciNet  MATH  Google Scholar 

  16. Danchin R. Fourier analysis methods for PDE’s. http://perso.math.u-pem.fr/danchin.raphael/cours/courschine.pdf, 2005

  17. Degasperis A, Holm D-D, Hone A-N. A new integral equation with peakon solutions. Theoret Math Phys, 2002, 133: 1463–1474

    MathSciNet  Google Scholar 

  18. Deng S F, Guo B L, Wang T C. Travelling wave solutions of a generalized Camassa-Holm-Degasperis-Procesi equation. Sci China Math, 2011, 54: 555–572

    MathSciNet  MATH  Google Scholar 

  19. Escher J, Kohlmann J, Lenells J. The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations. J Geom Phys, 2011, 61: 436–452

    MathSciNet  MATH  Google Scholar 

  20. Fu Y, Liu Y, Qu C-Z. Well-posedness and blow-up solution for a modified two-component periodic Camassa-Holm system with peakons. Math Ann, 2010, 348: 415–448

    MathSciNet  MATH  Google Scholar 

  21. Fu Y, Qu C-Z. Well posedness and blow-up solution for a new coupled Camassa-Holm equation with peakons. J Math Phys, 2009, 50: 012906

    MathSciNet  MATH  Google Scholar 

  22. Fuchssteiner B, Fokas A-S. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys D, 1981, 4: 47–66

    MathSciNet  MATH  Google Scholar 

  23. Geng X-G, Xue B. An extension of integrable peakon equations with cubic nonlinearity. Nonlinearity, 2009, 22: 1847–1856

    MathSciNet  MATH  Google Scholar 

  24. Geng X-G, Xue B. A three-component generalization of Camassa-Holm equation with N-peakon solutions. Adv Math, 2011, 226: 827–839

    MathSciNet  MATH  Google Scholar 

  25. Grunert K, Holden H, Raynaud X. Global solutions for the two-component Camassa-Holm system. Comm Partial Differential Equations, 2012, 37: 2245–2271

    MathSciNet  MATH  Google Scholar 

  26. Gui G-L, Liu Y. On the global existence and wave breaking criteria for the two-component Camassa-Holm system. J Funct Anal, 2010, 258: 4251–4278

    MathSciNet  MATH  Google Scholar 

  27. Gui G-L, Liu Y, Olver P-J, et al. Wave breaking and peakons for a modified Camassa-Holm equation. Comm Math Phys, 2013, 319: 731–759

    MathSciNet  MATH  Google Scholar 

  28. Himonas A, Holliman C. The Cauchy problem for the Novikov equation. Nonlinearity, 2012, 25: 449–479

    MathSciNet  MATH  Google Scholar 

  29. Himonas A, Mantzavinos D. The initial value problem for a Novikov system. J Math Phys, 2016, 57: 071503

    MathSciNet  MATH  Google Scholar 

  30. Holm D-D, Ivanov R. Multi-component generalizations of the CH equation: Geometrical aspects, peakons and numerical examples. J Phys A, 2010, 43: 492001

    MathSciNet  MATH  Google Scholar 

  31. Holm D-D, Ivanov R. Two-component CH system: Inverse scattering, peakons and geometry. Inverse Problems, 2011, 27: 045013

    MathSciNet  MATH  Google Scholar 

  32. Holm D-D, Náraigh L-Ó, Tronci C. Singular solutions of a modified two-component Camassa-Holm equation. Phys Rev E (3), 2009, 79: 016601

    MathSciNet  Google Scholar 

  33. Hone A-N, Lundmark H, Szmigielski J. Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa-Holm type equation. Dyn Partial Differ Equ, 2009, 6: 253–289

    MathSciNet  MATH  Google Scholar 

  34. Hone A-N, Wang J-P. Integrable peakon equations with cubic nonlinearity. J Phys A, 2008, 41: 372002

    MathSciNet  MATH  Google Scholar 

  35. Jiang Z-H, Ni L-D. Blow-up phenomenon for the integrable Novikov equation. J Math Anal Appl, 2012, 385: 551–558

    MathSciNet  MATH  Google Scholar 

  36. Johnson R-S. Camassa-Holm, Korteweg-de Vries and related models for water waves. J Fluid Mech, 2002, 455: 63–82

    MathSciNet  MATH  Google Scholar 

  37. Kang J, Liu X-C, Olver P-J, et al. Liouville correspondences between integrable hierarchies. SIGMA Symmetry Integrability Geom Methods Appl, 2017, 13: 035

    MathSciNet  MATH  Google Scholar 

  38. Kenig C-E, Ponce G, Vega L. A bilinear estimate with applications to the KdV equation. J Amer Math Soc, 1996, 9: 573–603

    MathSciNet  MATH  Google Scholar 

  39. Kouranbaeva S. The Camassa-Holm equation as a geodesic flow on the diffeomorphism group. J Math Phys, 1999, 40: 857–868

    MathSciNet  MATH  Google Scholar 

  40. Lai S-Y. Global weak solutions to the Novikov equation. J Funct Anal, 2013, 265: 520–544

    MathSciNet  MATH  Google Scholar 

  41. Li H-M, Li Y-Q, Chen Y. Bi-Hamiltonian structure of multi-component Novikov equation. J Nonlinear Math Phys, 2014, 21: 509–520

    MathSciNet  MATH  Google Scholar 

  42. Li N-H, Liu Q-P. On bi-Hamiltonian structure of two-component Novikov equation. Phys Lett A, 2013, 377: 257–261

    MathSciNet  MATH  Google Scholar 

  43. Li Y-A, Olver P-J. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J Differential Equations, 2000, 162: 27–63

    MathSciNet  MATH  Google Scholar 

  44. Li Y Y, Qu C Z. Symplectic invariants for curves and integrable systems in similarity symplectic geometry. Sci China Math, 2015, 58: 1415–1432

    MathSciNet  MATH  Google Scholar 

  45. Liu X-C, Liu Y, Olver P, et al. Orbital stability of peakons for a generalization of the modified Camassa-Holm equation. Nonlinearity, 2014, 27: 2297–2319

    MathSciNet  MATH  Google Scholar 

  46. Liu X-C, Liu Y, Qu C-Z. Stability of peakons for the Novikov equation. J Math Pures Appl (9), 2014, 101: 172–187

    MathSciNet  MATH  Google Scholar 

  47. Lundmark H, Szmigielski J. An inverse spectral problem related to the Geng-Xue two-component peakon equation. Mem Amer Math Soc, 2016, 244: 1155

    MathSciNet  MATH  Google Scholar 

  48. Lundmark H, Szmigielski J. Dynamics of interlacing peakons (and shockpeakons) in the Geng-Xue equation. J Integr Syst, 2017, 2: xyw014

    MathSciNet  MATH  Google Scholar 

  49. Novikov V. Generalizations of the Camassa-Holm equation. J Phys A, 2009, 42: 342002

    MathSciNet  MATH  Google Scholar 

  50. Olver P-J, Rosenau P. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys Rev E (3), 1996, 53: 1900–1906

    MathSciNet  Google Scholar 

  51. Qu C-Z, Liu X-C, Liu Y. Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity. Comm Math Phys, 2013, 322: 967–997

    MathSciNet  MATH  Google Scholar 

  52. Qu C-Z, Song J-F, Yao R-X. Multi-component integrable systems with peaked solitons and invariant curve flows in certain geometries. SIGMA Symmetry Integrability Geom Methods Appl, 2013, 9: 007

    Google Scholar 

  53. Song J-F, Qu C-Z, Qiao Z-J. A new integrable two-component system with cubic nonlinearity. J Math Phys, 2011, 52: 013503

    MathSciNet  MATH  Google Scholar 

  54. Tiğlay F. The periodic Cauchy problem for Novikov’s equation. Int Math Res Not IMRN, 2011, 2011: 4633–4648

    MathSciNet  MATH  Google Scholar 

  55. Whitham G-B. Linear and Nonlinear Waves. New York: John Wiley & Sons, 1980

    MATH  Google Scholar 

  56. Wu X-L, Yin Z-Y. Well-posedness and global existence for the Novikov equation. Ann Sc Norm Super Pisa Cl Sci (5), 2012, 11: 707–727

    MathSciNet  MATH  Google Scholar 

  57. Xia B-Q, Qiao Z-J. A new two-component integrable system with peakon solutions. Proc R Soc Lond Ser A Math Phys Eng Sci, 2015, 471: 20140750

    MathSciNet  MATH  Google Scholar 

  58. Xia B-Q, Qiao Z-J, Zhou R-G. A synthetical two-component model with peakon solutions. Stud Appl Math, 2015, 135: 248–276

    MathSciNet  MATH  Google Scholar 

  59. Xin Z-P, Zhang P. On the weak solutions to a shallow water equation. Comm Pure Appl Math, 2000, 53: 1411–1433

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11631007, 11471174 and 11471259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzheng Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, C., Fu, Y. On the Cauchy problem and peakons of a two-component Novikov system. Sci. China Math. 63, 1965–1996 (2020). https://doi.org/10.1007/s11425-019-9557-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-9557-6

Keywords

MSC(2010)

Navigation