Skip to main content
Log in

Well-posedness and dynamics of fractional FitzHugh-Nagumo systems on ℝN driven by nonlinear noise

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This article is concerned with the well-posedness as well as long-term dynamics of a wide class of non-autonomous, non-local, fractional, stochastic FitzHugh-Nagumo systems driven by nonlinear noise defined on the entire spaceℝRN. The well-posedness is proved for the systems with polynomial drift terms of arbitrary order as well as locally Lipschitz nonlinear diffusion terms by utilizing the pathwise and mean square uniform estimates. The mean random dynamical system generated by the solution operators is proved to possess a unique weak pullback mean random attractor in a Bochner space. The existence of invariant measures is also established for the autonomous systems with globally Lipschitz continuous diffusion terms. The idea of uniform tail-estimates of the solutions in the appropriate spaces is employed to derive the tightness of a family of probability distributions of the solutions in order to overcome the non-compactness of the standard Sobolev embeddings on ℝN as well as the lack of smoothing effect on one component of the solutions. The results of this paper are new even when the fractional Laplacian is replaced by the standard Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bates P W, Lu K, Wang B. Random attractors for stochastic reaction-diffusion equations on unbounded domains. J Differential Equations, 2009, 246: 845–869

    Article  MathSciNet  MATH  Google Scholar 

  2. Brzeźniak Z, Motyl E, Ondrejat M. Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains. Ann Probab, 2017, 45: 3145–3201

    Article  MathSciNet  MATH  Google Scholar 

  3. Brzeźniak Z, Ondreját M, Seidler J. Invariant measures for stochastic nonlinear beam and wave equations. J Differential Equations, 2016, 260: 4157–4179

    Article  MathSciNet  MATH  Google Scholar 

  4. Caraballo T, Garrido-Atienza M J, Schmalfuss B, et al. Non-autonomous and random attractors for delay random semilinear equations without uniqueness. Discrete Contin Dyn Syst, 2008, 21: 415–443

    Article  MathSciNet  MATH  Google Scholar 

  5. Caraballo T, Garrido-Atienza M J, Schmalfuss B, et al. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete Contin Dyn Syst Ser B, 2010, 14: 439–455

    MathSciNet  MATH  Google Scholar 

  6. Caraballo T, Langa J A, Melnik V S, et al. Pullback attractors of nonautonomous and stochastic multivalued dynamical systems. Set-Valued Anal, 2003, 11: 153–201

    Article  MathSciNet  MATH  Google Scholar 

  7. Crauel H, Debussche A, Flandoli F. Random attractors. J Dynam Differential Equations, 1997, 9: 307–341

    Article  MathSciNet  MATH  Google Scholar 

  8. Crauel H, Flandoli F. Attractors for random dynamical systems. Probab Theory Related Fields, 1994, 100: 365–393

    Article  MathSciNet  MATH  Google Scholar 

  9. Da Prato G, Zabczyk J. Stochastic Equations in Infinite Dimensions. Cambridge: Cambridge University Press, 1992

    Book  MATH  Google Scholar 

  10. Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136: 521–573

    Article  MathSciNet  MATH  Google Scholar 

  11. Eckmann J-P, Hairer M. Invariant measures for stochastic partial differential equations in unbounded domains. Non-linearity, 2001, 14: 133–151

    MathSciNet  MATH  Google Scholar 

  12. Eckmann J-P, Hairer M. Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise. Comm Math Phys, 2001, 219: 523–565

    Article  MathSciNet  MATH  Google Scholar 

  13. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys J, 1961, 1: 445–466

    Article  Google Scholar 

  14. Garrido-Atienza M J, Ogrowsky A, Schmalfuss B. Random differential equations with random delays. Stoch Dyn, 2011, 11: 369–388

    Article  MathSciNet  MATH  Google Scholar 

  15. Garrido-Atienza M J, Schmalfuss B. Ergodicity of the infinite dimensional fractional Brownian motion. J Dynam Differential Equations, 2011, 23: 671–681

    Article  MathSciNet  MATH  Google Scholar 

  16. Gess B. Random attractors for degenerate stochastic partial differential equations. J Dynam Differential Equations, 2013, 25: 121–157

    Article  MathSciNet  MATH  Google Scholar 

  17. Gess B. Random attractors for singular stochastic evolution equations. J Differential Equations, 2013, 255: 524–559

    Article  MathSciNet  MATH  Google Scholar 

  18. Gess B, Liu W, Rockner M. Random attractors for a class of stochastic partial differential equations driven by general additive noise. J Differential Equations, 2011, 251: 1225–1253

    Article  MathSciNet  MATH  Google Scholar 

  19. Gu A, Li D, Wang B, et al. Regularity of random attractors for fractional stochastic reaction-diffusion equations on ℝn. J Differential Equations, 2018, 264: 7094–7137

    Article  MathSciNet  MATH  Google Scholar 

  20. Gu A, Wang B. Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise. Discrete Contin Dyn Syst Ser B, 2018, 23: 1689–1720

    MathSciNet  MATH  Google Scholar 

  21. Jara M. Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps. Comm Pure Appl Math, 2009, 62: 198–214

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim J U. Periodic and invariant measures for stochastic wave equations. Electron J Differential Equations, 2004, 2004: 1–30

    MathSciNet  Google Scholar 

  23. Kim J U. On the stochastic Burgers equation with polynomial nonlinearity in the real line. Discrete Contin Dyn Syst Ser B, 2006, 6: 835–866

    MathSciNet  MATH  Google Scholar 

  24. Kim J U. On the stochastic Benjamin-Ono equation. J Differential Equations, 2006, 228: 737–768

    Article  MathSciNet  MATH  Google Scholar 

  25. Kim J U. Invariant measures for a stochastic nonlinear Schrödinger equation. Indiana Univ Math J, 2006, 55: 687–717

    Article  MathSciNet  MATH  Google Scholar 

  26. Kloeden P E, Langa J A. Flattening, squeezing and the existence of random attractors. Proc R Soc Lond Ser A Math Phys Eng Sci, 2007, 463: 163–181

    MathSciNet  MATH  Google Scholar 

  27. Kloeden P E, Lorenz T. Mean-square random dynamical systems. J Differential Equations, 2012, 253: 1422–1438

    Article  MathSciNet  MATH  Google Scholar 

  28. Krylov N V, Rozovskii B L. Stochastic evolution equations. J Soviet Math, 1981, 16: 1233–1277

    Article  MATH  Google Scholar 

  29. Li D, Lu K, Wang B, et al. Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains. Discrete Contin Dyn Syst, 2018, 38: 187–208

    Article  MathSciNet  MATH  Google Scholar 

  30. Li Y, Guo B. Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations. J Differential Equations, 2008, 245: 1775–1800

    Article  MathSciNet  MATH  Google Scholar 

  31. Lions J L. Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris: Dunod, 1969

    MATH  Google Scholar 

  32. Lu H, Bates P W, Lu S, et al. Dynamics of the 3-D fractional complex Ginzburg-Landau equation. J Differential Equations, 2015, 259: 5276–5301

    Article  MathSciNet  MATH  Google Scholar 

  33. Lu H, Bates P W, Xin J, et al. Asymptotic behavior of stochastic fractional power dissipative equations on ℝn. Nonlinear Anal, 2015, 128: 176–198

    Article  MathSciNet  MATH  Google Scholar 

  34. Marinelli C, Scarpa L. A variational approach to dissipative SPDEs with singular drift. Ann Probab, 2018, 46: 1455–1497

    Article  MathSciNet  MATH  Google Scholar 

  35. Misiats O, Stanzhytskyi O, Yip N. Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains. J Theoret Probab, 2016, 29: 996–1026

    Article  MathSciNet  MATH  Google Scholar 

  36. Schmalfuss B. Backward cocycles and attractors of stochastic differential equations. In: International Seminar on Applied Mathematics—Nonlinear Dynamics: Attractor Approximation and Global Behavior. Dresden: Technische Universität, 1992, 185–192

    Google Scholar 

  37. Shi L, Wang R, Lu K, et al. Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains. J Differential Equations, 2019, 267: 4373–4409

    Article  MathSciNet  MATH  Google Scholar 

  38. Tang B Q. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete Contin Dyn Syst, 2015, 35: 441–466

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang B. Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J Differential Equations, 2012, 253: 1544–1583

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang B. Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations. Nonlinear Anal, 2017, 158: 60–82

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang B. Weak pullback attractors for mean random dynamical systems in Bochner spaces. J Dynam Differential Equations, 2019, 31: 2177–2204

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang B. Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise. J Differential Equations, 2019, 268: 1–59

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang R, Li Y, Wang B. Random dynamics of fractional nonclassical diffusion equations driven by colored noise. Discrete Contin Dyn Syst, 2019, 39: 4091–4126

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang R, Shi L, Wang B. Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on ℝN. Nonlinearity, 2019, 32: 4524–4556

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhao W. Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on ℝN. Comput Math Appl, 2018, 75: 3801–3824

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by the China Scholarship Council (Grant No. 201806990064). This work was done when the first author visited the Department of Mathematics at the New Mexico Institute of Mining and Technology. The first author expresses his thanks to all the people there for their kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renhai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Guo, B. & Wang, B. Well-posedness and dynamics of fractional FitzHugh-Nagumo systems on ℝN driven by nonlinear noise. Sci. China Math. 64, 2395–2436 (2021). https://doi.org/10.1007/s11425-019-1714-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-1714-2

Keywords

MSC(2010)

Navigation