Skip to main content
Log in

Random Attractors for Degenerate Stochastic Partial Differential Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We prove the existence of random attractors for a large class of degenerate stochastic partial differential equations (SPDE) perturbed by joint additive Wiener noise and real, linear multiplicative Brownian noise, assuming only the standard assumptions of the variational approach to SPDE with compact embeddings in the associated Gelfand triple. This allows spatially much rougher noise than in known results. The approach is based on a construction of strictly stationary solutions to related strongly monotone SPDE. Applications include stochastic generalized porous media equations, stochastic generalized degenerate \(p\)-Laplace equations and stochastic reaction diffusion equations. For perturbed, degenerate \(p\)-Laplace equations we prove that the deterministic, \(\infty \)-dimensional attractor collapses to a single random point if enough noise is added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that while there will be an associated Markovian semigroup defined by \(P_tf(x) := \mathbb{E }f(\varphi (t;\cdot )x)\) in the applications considered in Sect. 4, this is not true in general. For more details we refer to [17].

References

  1. Arnold, L.: Random Dynamical Systems. Springer Monographs in Mathematics. Springer, Berlin (1998)

    Google Scholar 

  2. Aronson, D.G., Peletier, L.A.: Large time behaviour of solutions of the porous medium equation in bounded domains. J. Differ. Equ. 39(3), 378–412 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbu, L.A., Da Prato, G., Röckner, M.: Existence and uniqueness of nonnegative solutions to the stochastic porous media equation. Indiana Univ. Math. J. 57(1), 187–211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbu, V., Da Prato, G., Röckner, M.: Some results on stochastic porous media equations. Boll. Unione Mat. Ital. (9) 1(1), 1–15 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Barbu, V., Da Prato, G., Röckner, M.: Existence of strong solutions for stochastic porous media equation under general monotonicity conditions. Ann. Probab. 37(2), 428–452 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beyn, W.-J., Gess, B., Lescot, P., Röckner, M.: The global random attractor for a class of stochastic porous media equations. Commun. Partial Differ. Equ. 36(3), 446–469 (2011)

    Article  MATH  Google Scholar 

  7. Caraballo, T., Crauel, H., Langa, J.A., Robinson, J.C.: The effect of noise on the Chafee-Infante equation: a nonlinear case study. Proc. Am. Math. Soc. 135(2), 373–382 (2007). electronic

    Article  MathSciNet  MATH  Google Scholar 

  8. Caraballo, T., Kloeden, P.E., Schmalfuß, B.: Exponentially stable stationary solutions for stochastic evolution equations and their perturbation. Appl. Math. Optim. 50(3), 183–207 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carvalho, A.N., Cholewa, J.W., Dlotko, T.: Global attractors for problems with monotone operators. Boll. Unione Mat. Ital. Sez. B Arctic. Ric. Mat. (8) 2(3), 693–706 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Carvalho, A.N., Gentile, C.B.: Comparison results for nonlinear parabolic equations with monotone principal part. J. Math. Anal. Appl. 259(1), 319–337 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carvalho, A.N., Gentile, C.B.: Asymptotic behaviour of non-linear parabolic equations with monotone principal part. J. Math. Anal. Appl. 280(2), 252–272 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, Vol. 580. Springer, Berlin (1977)

    Google Scholar 

  13. Cholewa, J.W., Dlotko, T.: Global Attractors in Abstract Parabolic Problems, Volume 278 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  14. Cholewa, J.W., Rodriguez-Bernal, A.: Extremal equilibria for monotone semigroups in ordered spaces with application to evolutionary equations. J. Differ. Equ. 249(3), 485–525 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chueshov, I.: Monotone Random Systems Theory and Applications, Volume 1779 of Lecture Notes in Mathematics. Springer, Berlin (2002)

    Book  Google Scholar 

  16. Chueshov, I., Scheutzow, M.: On the structure of attractors and invariant measures for a class of monotone random systems. Dyn. Syst. 19(2), 127–144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Crauel, H.: Markov measures for random dynamical systems. Stoch. Stoch. Rep. 37(3), 153–173 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Crauel, H.: Global random attractors are uniquely determined by attracting deterministic compact sets. Ann. Mat. Pura Appl. (4) 176, 57–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Crauel, H.: White noise eliminates instability. Arch. Math. (Basel) 75(6), 472–480 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Crauel, H., Debussche, A., Flandoli, F.: Random attractors. J. Dyn. Differ. Equ. 9(2), 307–341 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Crauel, H., Flandoli, F.: Attractors for random dynamical systems. Theory Relat. Fields 100, 365–393 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Crauel, H., Flandoli, F.: Additive noise destroys a pitchfork bifurcation. J. Dyn. Differ. Equ. 10(2), 259–274 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Da Prato, G., Röckner, M.: Weak solutions to stochastic porous media equations. J. Evol. Equ. 4(2), 249–271 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Da Prato, G., Röckner, M., Rozovskii, B.L., Wang, F.-Y.: Strong solutions of stochastic generalized porous media equations: existence, uniqueness, and ergodicity. Commun. Partial Differ. Equ. 31(1–3), 277–291 (2006)

    Article  MATH  Google Scholar 

  25. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  26. Efendiev, M.A., Zelik, S.V.: Finite- and infinite-dimensional attractors for porous media equations. Proc. Lond. Math. Soc. (4) 96(1), 51–77 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gess, B.: Random attractors for singular stochastic partial, differential equations. arXiv:1111.0205v1 (2011)

  28. Gess, B.: Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise. arXiv:1108.2413v1 (2011)

  29. Gess, B.: Strong solutions for stochastic partial differential equations of gradient type. J. Funct. Anal. 263(8), 2355–2383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gess, B., Liu, W., Röckner, M.: Random attractors for a class of stochastic partial differential equations driven by general additive noise. J. Differ. Equ. 251(4–5), 1225–1253 (2011)

    Article  MATH  Google Scholar 

  31. Imkeller, P., Lederer, C.: On the cohomology of flows of stochastic and random differential equations. Probab. Theory Relat. Fields 120(2), 209–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Keller, H.: Attractors of Second Order Stochastic Differential Equations. Logos Verlag Berlin, Berlin (2002)

    MATH  Google Scholar 

  33. Kim, J.U.: On the stochastic porous medium equation. J. Differ. Equ. 220(1), 163–194 (2006)

    Article  MATH  Google Scholar 

  34. Krylov, N.V., Rozovskiĭ, B.L.: Stochastic evolution equations. In Current problems in mathematics, Vol. 14 (Russian), pages 71–147, 256. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow (1979)

  35. Kuksin, S.B., Shirikyan, A.: On random attractors for systems of mixing type. Funktsional. Anal. i Prilozhen. 38(1), 34–46 (2004)

    Google Scholar 

  36. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence (1967)

    Google Scholar 

  37. Lederer, C.: Konjugation stochastischer und zufälliger stationärer Differentialgleichungen und eine Version des lokalen Satzes von Hartman-Grobman für stochastische Differentialgleichungen. PhD thesis (2001)

  38. Liu, W.: Harnack inequality and applications for stochastic evolution equations with monotone drifts. J. Evol. Equ. 9(4), 747–770 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, W., Röckner, M.: SPDE in Hilbert space with locally monotone coefficients. J. Funct. Anal. 259(11), 2902–2922 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, Y., Yang, L., Zhong, C.: Asymptotic regularity for \(p\)-Laplacian equation. J. Math. Phys. 51(5), 7 (2010)

    Article  MathSciNet  Google Scholar 

  41. Mattingly, J.C.: Ergodicity of \(2\)D Navier-Stokes equations with random forcing and large viscosity. Commun. Math. Phys. 206(2), 273–288 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pardoux, É: Equations aux dérivées partielles stochastiques non linéaires monotones. PhD thesis (1975)

  43. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations, Volume 1905 of Lecture Notes in Mathematics. Springer, Berlin (2007)

    Google Scholar 

  44. Ren, J., Röckner, M., Wang, F.-Y.: Stochastic generalized porous media and fast diffusion equations. J. Differ. Equ. 238(1), 118–152 (2007)

    Article  MATH  Google Scholar 

  45. Röckner, M., Wang, F.-Y.: Non-monotone stochastic generalized porous media equations. J. Differ. Equ. 245(12), 3898–3935 (2008)

    Article  MATH  Google Scholar 

  46. Schmalfuss, B.: Backward cocycle and attractors of stochastic differential equations. In: Reitmann, V., Riedrich, T., Koksch, N. (eds.) International Seminar on Applied Mathematics—Nonlinear Dynamics: Attractor Approximation and Global Behavior, pp. 185–192. Technische Universität Dresden, Dresden (1992)

    Google Scholar 

  47. Takeuchi, S., Yokota, T.: Global attractors for a class of degenerate diffusion equations. Electron. J. Differ. Equ. 76, 13 (2003). electronic

    MathSciNet  Google Scholar 

  48. Vázquez, J.L.: The Porous Medium Equation. Mathematical Theory. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford (2007)

    Google Scholar 

  49. Wang, B., Jones, R.: Asymptotic behavior of a class of non-autonomous degenerate parabolic equations. Nonlinear Anal. 72(9–10), 3887–3902 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yang, M., Sun, C., Zhong, C.: Global attractors for \(p\)-Laplacian equation. J. Math. Anal. Appl. 327(2), 1130–1142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhao, W., Li, Y.: Existence of random attractors for a \(p\)-Laplacian-type equation with additive noise. Abstr. Appl. Anal., 1–21 (2011)

Download references

Acknowledgments

Supported by DFG-Internationales Graduiertenkolleg Stochastics and Real World Models, the SFB-701 and the BiBoS-Research Center. The author would like to thank Michael Röckner for valuable discussions and comments. Several helpful comments by the anonymous referee are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Gess.

Appendix: Existence of Unique Solutions to Monotone SPDE

Appendix: Existence of Unique Solutions to Monotone SPDE

We recall the variational approach to monotone SPDE (cf. [34, 42, 43]). Let \(V \subseteq H \subseteq V^*\) be a Gelfand triple, \((\Omega ,\mathcal{G },\{\mathcal{G }_t\}_{t \in [0,T]},\mathbb{P })\) be a normal filtered probability space and \(W\) be a cylindrical Wiener process on some separable Hilbert space \(U\). Further assume that

$$\begin{aligned} A: [0,T] \times V \times \Omega \rightarrow V^*,\ B: [0,T] \times V \times \Omega \rightarrow L_2(U,H) \end{aligned}$$

are \(\mathcal{G }_t\)-progressively measurable. We extend \(A, B\) by \(0\) to all of \([0,T] \times H \times \Omega \).

Definition 6.1

A continuous, \(H\)-valued, \(\mathcal{G }_t\)-adapted process \(\{X_t\}_{t \in [0,T]}\) is called a solution to

$$\begin{aligned} dX_t = A(t,X_t)dt + B(t,X_t)dW_t \end{aligned}$$
(6.1)

if \(X \in L^{\alpha }([0,T]\times \Omega ;V)\) and \(\mathbb{P }\)-a.s.

$$\begin{aligned} X_t = X_0 + \int _0^t A(r,X_r)dr + \int _0^t B(r,X_r)dW_r,\quad \forall t \in [0,T]. \end{aligned}$$

We assume that there are \(\alpha > 1, c,C > 0\) and \(f \in L^1([0,T]\times \Omega )\) positive and \(\mathcal{G }_t\)-adapted such that

  1. (H1):

    (Hemicontinuity) The map \(s \mapsto {}_{V^*}\langle A(t,v_1+sv_2),v\rangle _V\) is continuous on \(\mathbb{R }\),

  2. (H2):

    (Monotonicity)

    $$\begin{aligned} 2 {}_{V^*}\langle A(t,v_1)-A(t,v_2),v_1-v_2\rangle _V + \Vert B(t,v_1)-B(t,v_2)\Vert _{L_2(U,H)}^2 \le C\Vert v_1-v_2\Vert _H^2, \end{aligned}$$
  3. (H3):

    (Coercivity)

    $$\begin{aligned} 2 {}_{V^*}\langle A(t,v),v\rangle _V + \Vert B(t,v)\Vert _{L_2(U,H)}^2 + c\Vert v\Vert _V^\alpha \le f_t + C\Vert v\Vert _H^2, \end{aligned}$$
  4. (H4):

    (Growth)

    $$\begin{aligned} \left\Vert A(t,v) \right\Vert_{V^*}^\frac{\alpha }{\alpha -1} \le C\Vert v\Vert _V^\alpha +f_t, \end{aligned}$$

for all \(v_1, v_2, v \in V\) and \((t,\omega ) \in [0,T]\times \Omega \).

Theorem 6.2

([43], Theorem 4.2.4) Assume \((H1)\)\((H4)\). Then, for every \(X_0 \!\in \! L^2(\Omega ,\mathcal{G }_0;H)\) (5.15) has a unique solution \(X\) satisfying

$$\begin{aligned} \mathbb{E }\left(\sup _{t \in [0,T]}\Vert X_t\Vert _H^2 + \int _0^T \Vert X_r\Vert _V^\alpha dr \right) < \infty . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gess, B. Random Attractors for Degenerate Stochastic Partial Differential Equations. J Dyn Diff Equat 25, 121–157 (2013). https://doi.org/10.1007/s10884-013-9294-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-013-9294-5

Keywords

Mathematics Subject Classification (2010)

Navigation