Skip to main content
Log in

Frobenius bimodules and flat-dominant dimensions

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We establish relations between Frobenius parts and between flat-dominant dimensions of algebras linked by Frobenius bimodules. This is motivated by the Nakayama conjecture and an approach of Martinez-Villa to the Auslander-Reiten conjecture on stable equivalences. We show that the Frobenius parts of Frobenius extensions are again Frobenius extensions. Furthermore, let A and B be finite-dimensional algebras over a field k, and let domdim(AX) stand for the dominant dimension of an A-module X. If BMA is a Frobenius bimodule, then domdim(A) ⩽ domdim(BM) and domdim(B) ⩽ domdim(AHomB(M, B)). In particular, if BA is a left-split (or right-split) Frobenius extension, then domdim(A) = domdim(B). These results are applied to calculate flat-dominant dimensions of a number of algebras: shew group algebras, stably equivalent algebras, trivial extensions and Markov extensions. We also prove that the universal (quantised) enveloping algebras of semisimple Lie algebras are QF-3 rings in the sense of Morita.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander M, Reiten I, Smalø S O. Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics, vol. 36. Cambridge: Cambridge University Press, 1995

    Google Scholar 

  2. Bekaert X. Universal enveloping algebras and some applications in physics. Lecture given at the first Modave Summer School in Mathematical Physics, Belgium, June 2005

    Google Scholar 

  3. Brown K A, Goodearl K R. Lectures on Algebraic Quantum Groups. Advanced Courses in Mathematics. Basel: Birkhäuser, 2002

    Google Scholar 

  4. Brown K A, Gordon I G, Stroppel C H. Cherednik, Hecke and quantum algebras as free Frobenius and Calabi-Yau extensions. J Algebra, 2008, 319: 1007–1034

    Article  MathSciNet  Google Scholar 

  5. Cartan H, Eilenberg S. Homological Algebra. Princeton: Princeton University Press, 1956

    MATH  Google Scholar 

  6. Chen H X, Pan S Y, Xi C C. Inductions and restrictions for stable equivalences of Morita type. J Pure Appl Algebra, 2012, 216: 643–661

    Article  MathSciNet  Google Scholar 

  7. Chen H X, Xi C C. Dominant dimensions, derived equivalences and tilting modules. Isreal J Math, 2016, 215: 349–395

    Article  MathSciNet  Google Scholar 

  8. Dugas A, Martínez-Villa R. A note on stable equivalences of Morita type. J Pure Appl Algebra, 2007, 208: 421–433

    Article  MathSciNet  Google Scholar 

  9. Fang M, Hu W, Koenig S. Derived equivalences, restriction to self-injective subalgebras and invariance of homological dimensions. ArXiv:1607.03513, 2016

  10. Gómez-Torrecillas J, Torrecillas B. FTF rings and Frobenius extensions. J Algebra, 2002, 248: 1–14

    Article  MathSciNet  Google Scholar 

  11. Hoshino M. On dominant dimension of noetherian ring. Osaka J Math, 1989, 26: 275–280

    MathSciNet  MATH  Google Scholar 

  12. Hu W, Xi C C. Derived equivalences and stable equivalences of Morita type, II. Rev Mat Iberoam, 2018, 34: 55–110

    Article  MathSciNet  Google Scholar 

  13. Hu W, Xi C C. Constructing derived equivalences by Milnor patching. ArXiv:1704.04914, 2017

  14. Iversen B. On flat extensions of Noetherian rings. Proc Amer Math Soc, 1965, 16: 1401–1406

    Article  MathSciNet  Google Scholar 

  15. Kadison L. The Jones polynomial and certain separable Frobenius extensions. J Algebra, 1996,186: 461–475

    Article  MathSciNet  Google Scholar 

  16. Kadison L. New Examples of Frobenius Extensions. University Lecture Series, vol. 14. Providence: Amer Math Soc, 1999

    Google Scholar 

  17. Kasch F. Projektive Frobenius-Erweiterungen. S.-B. Heidelberger Akad Wiss Math-Nat Kl, 1960/1961, 1960/1961: 87–109

  18. Kerner O, Yamagata K. Morita algebras. J Algebra, 2013, 382: 185–202

    Article  MathSciNet  Google Scholar 

  19. Kitamura Y. A characterization of a trivial extension which is a Frobenius one. Arch Math (Basel), 1980, 34: 111–113

    Article  MathSciNet  Google Scholar 

  20. Kock J. Frobenius Algebras and 2D Topological Quantum Field Theories. London Mathematical Society Student Texts, vol. 59. Cambridge: Cambridge Unversity Press, 2004

    Google Scholar 

  21. Liu Y M, Xi C C. Constructions of stable equivalences of Morita type for finite-dimensional algebras, III. J London Math Soc, 2007, 76: 567–585

    Article  MathSciNet  Google Scholar 

  22. Liu Y M, Zhou G D, Zimmermann A. Stable equivalences of Morita type do not preserve tensor products and trivial extensions of algebras. Proc Amer Math Soc, 2017, 145: 1881–1890

    Article  MathSciNet  Google Scholar 

  23. Martínez-Villa R. Properties that are left invariant under stable equivalence. Comm Algebra, 1990, 18: 4141–4169

    Article  MathSciNet  Google Scholar 

  24. Morita K. The endomorphism ring theorem for Frobenius extensions. Math Z, 1967, 102: 385–404

    Article  MathSciNet  Google Scholar 

  25. Morita K. Noethrian QF-3 rings and two-sided quasi-Frobenius maximal quotient rings. Proc Japan Acad, 1970, 46: 837–840

    Article  MathSciNet  Google Scholar 

  26. Müller B J. The classification of algebras by dominant dimension. Canada J Math, 1968, 20: 398–409

    Article  MathSciNet  Google Scholar 

  27. Nakayama T. On algebras with complete homology. Abh Math Sem Univ Hamburg, 1958, 22: 300–307

    Article  MathSciNet  Google Scholar 

  28. Nakayama T, Tsuzuku T. On Frobenius extensions, I. Nagoya Math J, 1960, 17: 89–110

    Article  MathSciNet  Google Scholar 

  29. Reiten I, Riedtmann Ch. Skew group algebras in the representation theory of Artin algebras. J Algebra, 1985, 92: 224–282

    Article  MathSciNet  Google Scholar 

  30. Rickard J. Morita theory for derived categories. J London Math Soc, 1989, 39: 436–456

    Article  MathSciNet  Google Scholar 

  31. Sugano K. Separable extensions and Frobenius extensions. Osaka J Math, 1970, 7: 291–299

    MathSciNet  MATH  Google Scholar 

  32. Tachikawa H. A characterization of QF-3 algebras. Proc Amer Math Soc, 1962, 13: 701–703 and 1963, 14: 995

    MathSciNet  MATH  Google Scholar 

  33. Xi C C. The relative Auslander-Reiten theory of modules. Preprint, available at: http://math0.bnu.edu.cn/~ccxi/

  34. Xu J Z. Minimal injective and flat resolutions of modules over Gorenstein rings. J Algebra, 1995, 175: 451–477

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (Grant No. 1192004). The author is grateful to the Alexander von Humboldt Foundation for supporting an academic visit to the University of Stuttgart in the summer of 2018, where part of the work was revised, and to Steffen Koenig for his friendship and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changchang Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, C. Frobenius bimodules and flat-dominant dimensions. Sci. China Math. 64, 33–44 (2021). https://doi.org/10.1007/s11425-018-9519-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9519-2

Keywords

MSC(2010)

Navigation