Skip to main content
Log in

An adaptive C0IPG method for the Helmholtz transmission eigenvalue problem

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The interior penalty methods using C0 Lagrange elements (C0IPG) developed in the recent decade for the fourth order problems are an interesting topic in academia at present. In this paper, we discuss the adaptive fashion of C0IPG method for the Helmholtz transmission eigenvalue problem. We give the a posteriori error indicators for primal and dual eigenfunctions, and prove their reliability and efficiency. We also give the a posteriori error indicator for eigenvalues and design a C0IPG adaptive algorithm. Numerical experiments show that this algorithm is efficient and can get the optimal convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M, Oden J T. A Posterior Error Estimation in Finite Element Analysis. New York: Wiley-Inter Science, 2011

    Google Scholar 

  2. An J, Shen J. A spectral-element method for transmission eigenvalue problems. J Sci Comput, 2013, 57: 670–688

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuska I, Osborn J E. Eigenvalue problems. In: Finite Element Methods (Part 1). Handbook of Numerical Analysis, vol. 2. North-Holand: Elsevier, 1991, 640–787

    Google Scholar 

  4. Babuska I, Rheinboldt W C. Error estimates for adaptive finite element computations. SIAM J Numer Anal, 1978, 15: 736–754

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner S C. C 0 interior penalty methods. In: Frontiers in Numerical Analysis-Durham 2010. Lecture Notes in Computational Science and Engineering, vol. 85. New York: Springer-Verlag, 2012, 79–147

    Google Scholar 

  6. Brenner S C, Gedicke J, Sung L-Y. Adaptive C 0 interior penalty method for biharmonic eigenvalue problems. Oberwolfach Rep, 2013, 10: 3265–3267

    Google Scholar 

  7. Brenner S C, Monk P, Sun J. C 0IPG Method for Biharmonic Eigenvalue Problems. Spectral and High Order Methods for Partial Differential Equations, ICOSAHOM 2014. Lecture Notes in Computational Science and Engineering, vol. 106. Switzerland: Springer, 2015

    Google Scholar 

  8. Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods, 2nd ed. New york: Springer-Verlag, 2002

    Book  MATH  Google Scholar 

  9. Brenner S C, Sung L. C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J Sci Comput, 2005, 22/23: 83–118

    Article  MATH  Google Scholar 

  10. Brenner S C, Wang K, Zhao J. Poincaré-Friedrichs inequalities for piecewise H 2 functions. Numer Funct Anal Optim, 2004, 25: 463–478

    Article  MathSciNet  MATH  Google Scholar 

  11. Cakoni F, Cayoren M, Colton D. Transmission eigenvalues and the nondestructive testing of dielectrics. Inverse Problems, 2009, 24: 065016

    Article  MathSciNet  MATH  Google Scholar 

  12. Cakoni F, Gintides D, Haddar H. The existence of an infinite discrete set of transmission eigenvalues. SIAM J Math Anal, 2010, 42: 237–255

    Article  MathSciNet  MATH  Google Scholar 

  13. Cakoni F, Haddar H. On the existence of transmission eigenvalues in an inhomogeneous medium. Appl Anal, 2009, 88: 475–493

    Article  MathSciNet  MATH  Google Scholar 

  14. Cakoni F, Monk P, Sun J. Error analysis for the finite element approximation of transmission eigenvalues. Comput Methods Appl Math, 2014, 14: 419–427

    Article  MathSciNet  MATH  Google Scholar 

  15. Chatelin F. Spectral Approximations of Linear Operators. New York: Academic Press, 1983

    MATH  Google Scholar 

  16. Chen L. iFEM: An Integrated Finite Element Method Package in MATLAB. Technical Report. Irvine: University of California at Irvine, 2009

    Google Scholar 

  17. Ciarlet P G. Basic error estimates for elliptic proplems. In: Finite Element Methods (Part1). Handbook of Numerical Analysis, vol. 2. North-Holand: Elsevier, 1991, 17–351

    Google Scholar 

  18. Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed. Applied Mathematical Sciences, vol. 93. New York: Springer, 1998

    Book  MATH  Google Scholar 

  19. Colton D, Monk P, Sun J. Analytical and computational methods for transmission eigenvalues. Inverse Problems, 2010, 26: 045011

    Article  MathSciNet  MATH  Google Scholar 

  20. Dai X, Xu J, Zhou A. Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer Math, 2008, 110: 313–355

    Article  MathSciNet  MATH  Google Scholar 

  21. Dörfler W. A convergent adaptive algorithm for Poisson’s equation, SIAM J Numer Anal, 1996, 33: 1106–1124

    Article  MathSciNet  MATH  Google Scholar 

  22. Engel G, Garikipati K, Hughes T, et al. Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput Methods Appl Mech Engrg, 2001, 191: 3669–3750

    Article  MathSciNet  MATH  Google Scholar 

  23. Geng H, Ji X, Sun J, et al. C 0IP methods for the transmission eigenvalue problem. J Sci Comput, 2016, 68: 326–338

    Article  MathSciNet  MATH  Google Scholar 

  24. Gudi T. A new error analysis for discontinuous finite element methods for the linear elliptic problems. Math Comp, 2010, 79: 2169–2189

    Article  MathSciNet  MATH  Google Scholar 

  25. Han J, Yang Y. An adaptive finite element method for the transmission eigenvalue problem. J Sci Comput, 2016, 69: 326–338

    Article  MathSciNet  Google Scholar 

  26. Han J, Yang Y. An H m-conforming spectral element method on multi-dimensional domain and its application to transmission eigenvalues. Sci China Math, 2017, 60: 1529–1542

    Article  MathSciNet  MATH  Google Scholar 

  27. Ji X, Sun J, Turner T. Algorithm 922: A mixed finite element method for Helmholtz transmission eigenvalues. ACM Trans Math Software, 2012, 38: 1–8

    Article  MathSciNet  MATH  Google Scholar 

  28. Ji X, Sun J, Xie H. A multigrid method for Helmholtz transmission eigenvalue problems. J Sci Comput, 2014, 60: 276–294

    Article  MathSciNet  MATH  Google Scholar 

  29. Ji X, Sun J, Yang Y. Optimal penalty parameter for C 0IPDG. Appl Math Lett, 2014, 37: 112–117

    Article  MathSciNet  MATH  Google Scholar 

  30. Kleefeld A. A numerical method to compute interior transmission eigenvalues. Inverse Problems, 2013, 29: 104012

    Article  MathSciNet  MATH  Google Scholar 

  31. Li H, Yang Y. C 0 IPG adaptive algorithms for biharmonic eigenvalue problem. Numer Algorithms, 2018, 78: 553–567

    Article  MathSciNet  MATH  Google Scholar 

  32. Monk P, Sun J. Finite element methods of Maxwell transmission eigenvalues. SIAM J Sci Comput, 2012, 34: 247–264

    Article  MathSciNet  Google Scholar 

  33. Morin P, Nochetto R H, Siebert K. Convergence of adaptive finite element methods. SIAM Rev, 2002, 44: 631–658

    Article  MathSciNet  MATH  Google Scholar 

  34. Oden J T, Reddy J N. An Introduction to the Mathematical Theory of Finite Elements. New York: Courier Dover Publications, 2012

    MATH  Google Scholar 

  35. Rynne B P, Sleeman B D. The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J Math Anal, 1991, 22: 1755–1762

    Article  MathSciNet  MATH  Google Scholar 

  36. Shi Z, Wang M. Finite Element Methods. Beijing: Scientific Publishers, 2013

    Google Scholar 

  37. Sun J. Estimation of transmission eigenvalues and the index of refraction from Cauchy data. Inverse Problems, 2011, 27: 015009

    Article  MathSciNet  MATH  Google Scholar 

  38. Sun J. Iterative methods for transmission eigenvalues. SIAM J Numer Anal, 2014, 49: 1860–1874

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun J, Xu L. Computation of Maxwell’s transmission eigenvalues and its applications in inverse medium problems. Inverse Problems, 2013, 29: 104013

    Article  MathSciNet  MATH  Google Scholar 

  40. Verfürth R. A Posteriori Error Estimation Techniques. Oxford: Oxford University Press, 2013

    Book  MATH  Google Scholar 

  41. Wells G N, Dung N T. A C 0 discontinuous Galerkin formulation for Kirhhoff plates. Comput Methods Appl. Mech Engrg, 2007, 196: 3370–3380

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang Y, Bi H, Li H, et al. Mixed method for the Helmholtz transmission eigenvalues. SIAM J Sci Comput, 2016, 38: 1383–1403

    Article  MathSciNet  Google Scholar 

  43. Yang Y, Bi H, Li H, et al. A C 0IPG method and its error estimates for the Helmholtz transmission eigenvalue problem. J Comput Appl Math, 2017, 326: 71–86

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang Y, Han J, Bi H. Error estimates and a two grid scheme for approximating transmission eigenvalues. ArXiv: 1506.06486, 2016

    Google Scholar 

  45. Yang Y, Han J, Bi H. Non-conforming finite element methods for transmission eigenvalue problem. Comput Methods Appl Mech Engrg, 2016, 307: 144–163

    Article  MathSciNet  Google Scholar 

  46. Zeng F, Sun J, Xu L. A spectral projection method for transmission eigenvalues. Sci China Math, 2016, 59: 1613–1622

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11561014). The authors thank the referees for their valuable comments and suggestions that led to the large improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yidu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yang, Y. An adaptive C0IPG method for the Helmholtz transmission eigenvalue problem. Sci. China Math. 61, 1519–1542 (2018). https://doi.org/10.1007/s11425-017-9334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9334-9

Keywords

MSC(2010)

Navigation