Skip to main content
Log in

Break-down criterion for the water-wave equation

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study the break-down mechanism of smooth solution for the gravity water-wave equation of infinite depth. It is proved that if the mean curvature κ of the free surface Σ t , the trace (V,B) of the velocity at the free surface, and the outer normal derivative \(\frac{{\partial P}} {{\partial n}}\) of the pressure P satisfy

$$\begin{array}{*{20}c} {\mathop {\sup }\limits_{t \in [0,T]} \left\| {\kappa (t)} \right\|_{L^p \cap L^2 } + \int_0^T {\left\| {(\nabla V,\nabla B)(t)} \right\|_{L^\infty }^6 dt < + \infty ,} } \\ {\mathop {\inf }\limits_{(t,x,y) \in [0,T] \times \sum _t } - \frac{{\partial P}} {{\partial n}}(t,x,y) \geqslant c_0 ,} \\ \end{array} $$

, for some p < 2d and c0 < 0, then the solution can be extended after t = T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alazard T, Burq N, Zuily C. On the water-wave equations with surface tension. Duke Math J, 2011, 158: 413–499

    Article  MathSciNet  MATH  Google Scholar 

  2. Alazard T, Burq N, Zuily C. Strichartz estimates for water waves. Ann Sci Éc Norm Supér, 2011, 44: 855–903

    MathSciNet  MATH  Google Scholar 

  3. Alazard T, Burq N, Zuily C. On the Cauchy problem for gravity water waves. Invent Math, 2014, 198: 71–163

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrose D M, Masmoudi N. The zero surface tension limit of two-dimensional water waves. Comm Pure Appl Math, 2005, 58: 1287–1315

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrose D M, Masmoudi N. The zero surface tension limit of three-dimensional water waves. Indiana Univ Math J, 2009, 58: 479–521

    Article  MathSciNet  MATH  Google Scholar 

  6. Beale J T, Kato T, Majda A J. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm Math Phys, 1984, 94: 61–66

    Article  MathSciNet  MATH  Google Scholar 

  7. Castro A, Córdoba D, Fefferman C, et al. Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves. Ann Math, 2012, 175: 909–948

    Article  MathSciNet  MATH  Google Scholar 

  8. Castro A, Córdoba D, Fefferman, C, et al. Finite time singularities for the free boundary incompressible Euler equations. Ann Math, 2013, 178: 1061–1134

    Article  MathSciNet  MATH  Google Scholar 

  9. Chemin J Y, Lerner N. Flot de champs de vecteurs non lipschitziens et êquations de Navier-Stokes. J Differential Equations, 1995, 121: 314–328

    Article  MathSciNet  Google Scholar 

  10. Christodoulou D, Lindblad H. On the motion of the free surface of a liquid. Comm Pure Appl Math, 2000, 53: 1536–1602

    Article  MathSciNet  MATH  Google Scholar 

  11. Coutand D, Shkoller S. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J Amer Math Soc, 2007, 20: 829–930

    Article  MathSciNet  MATH  Google Scholar 

  12. Coutand D, Shkoller S. On the finite-time splash and splat singularities for the 3-D free-surface Euler equations. Comm Math Phys, 2014, 325: 143–183

    Article  MathSciNet  MATH  Google Scholar 

  13. Craig W. An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm Partial Differential Equations, 1985, 10: 787–1003

    Article  MathSciNet  MATH  Google Scholar 

  14. Craig W, Eugene Wayne C. Mathematical aspects of surface waves on water. Uspekhi Mat Nauk, 2007, 62: 95–116

    Article  MathSciNet  MATH  Google Scholar 

  15. Germain P, Masmoudi N, Shatah J. Global solutions for the gravity water waves equation in dimension 3. Ann Math, 2012, 175: 691–754

    Article  MathSciNet  MATH  Google Scholar 

  16. Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 2001

    Google Scholar 

  17. Han Q, Lin F H. Elliptic Partial Differential Equations. Providence, RI: Amer Math Soc, 1997

    MATH  Google Scholar 

  18. Lannes D. Well-posedness of the water-waves equations. J Amer Math Soc, 2005, 18: 605–654

    Article  MathSciNet  MATH  Google Scholar 

  19. Lindblad H. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann Math, 2005, 162: 109–194

    Article  MathSciNet  MATH  Google Scholar 

  20. Métivier G. Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems. Pisa: Edizioni della Normale, 2008

    MATH  Google Scholar 

  21. Ming M, Zhang Z F. Well-posedness of the water-wave problem with surface tension. J Math Pures Appl, 2009, 92: 429–455

    Article  MathSciNet  MATH  Google Scholar 

  22. Nalimov V I. The Cauchy-Poisson problem (in Russian). Dynamika Splosh Sredy, 1974, 18: 104–210

    MathSciNet  Google Scholar 

  23. Shatah J, Zeng C C. Geometry and a priori estimates for free boundary problems of the Euler’s equation. Comm Pure Appl Math, 2008, 61: 698–744

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu S J. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent Math, 1997, 130: 39–72

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu S J. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J Amer Math Soc, 1999, 12: 445–495

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu S J. Almost global well-posedness of the 2-D full water wave problem. Invent Math, 2009, 177: 45–135

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu S J. Global well-posedness of the 3-D full water wave problem. Invent Math, 2011, 184: 125–220

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu S J. On a class of self-similar 2D surface water waves. ArXiv: 1206.2208, 2012

    Google Scholar 

  29. Yosihara H. Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ Res Inst Math Sci, 1982, 18: 49–96

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang P, Zhang Z F. On the free boundary problem of three-dimensional incompressible Euler equations. Comm Pure Appl Math, 2008, 61: 877–940

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11371039 and 11425103). The second author thanks Professor Sijue Wu for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiFei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, Z. Break-down criterion for the water-wave equation. Sci. China Math. 60, 21–58 (2017). https://doi.org/10.1007/s11425-016-5141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-5141-6

Keywords

MSC(2010)

Navigation