Skip to main content
Log in

Derivative formulas and Poincaré inequality for Kohn-Laplacian type semigroups

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

As a generalization to the heat semigroup on the Heisenberg group, the diffusion semigroup generated by the subelliptic operator \(\L: = \frac{1}{2}\sum\nolimits_{i = 1}^m {X_i^2on{\kern 1pt} {\mathbb{R}^m} \times {\mathbb{R}^d}} \) is investigated, where \({X_i}\left( {x,y} \right) = \sum\limits_{k = 1}^m {{\sigma _{ki}}{\partial _{xk}} + } \sum\limits_{l = 1}^d {{{\left( {{A_l}x} \right)}_i}{\partial _{yl}}} ,\left( {x,y} \right) \in {\mathbb{R}^{m + d}},1 \leqslant i \leqslant m\) for σ an invertible m×m-matrix and {Al}1≤ld some m×m-matrices such that the Hörmander condition holds. We first establish Bismut-type and Driver-type derivative formulas with applications on gradient estimates and the coupling/Liouville properties, which are new even for the heat semigroup on the Heisenberg group; then extend some recent results derived for the heat semigroup on the Heisenberg group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnaudon M, Thalmaier A. The differentiation of hypoelliptic diffusion semigroups. Illinois J Math, 2010, 54:1285–1311

    MathSciNet  MATH  Google Scholar 

  2. Arnaudon M, Thalmaier A, Wang F-Y. Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below. Bull Sci Math, 2006, 130:223–233

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakry D, Baudoin F, Bonnefont M, et al. On gradient bounds for the heat kernel on the Heisenberg group. J Funct Anal, 2008, 255:1905–1938

    Article  MathSciNet  MATH  Google Scholar 

  4. Baudoin F, Bonnefont M. Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality. J Funct Anal, 2012, 262:2646–2676

    Article  MathSciNet  MATH  Google Scholar 

  5. Baudoin F, Bonnefont M, Garofalo N. A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality. Math Ann, 2014, 358:833–860

    Article  MathSciNet  MATH  Google Scholar 

  6. Baudoin F, Garofalo N. Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. ArXiv:1101.3590, 2011

    Google Scholar 

  7. Baudoin F, Gordina M, Melcher T. Quasi-invariance for heat kernel measures on sub-Riemannian infinite-dimensional Heisenberg groups. Trans Amer Math Soc, 2013, 365:4313–4350

    Article  MathSciNet  MATH  Google Scholar 

  8. Bismut J M. Large Deviations and the Malliavin Calculus. Boston: Birkhäuser, 1984

    MATH  Google Scholar 

  9. Cranston M, Greven A. Coupling and harmonic functions in the case of continuous time Markov processes. Stochastic Process Appl, 1995, 60:261–286

    Article  MathSciNet  MATH  Google Scholar 

  10. Cranston M, Wang F-Y. A condition for the equivalence of coupling and shift-coupling. Ann Probab, 2000, 28:1666–1679

    Article  MathSciNet  MATH  Google Scholar 

  11. Driver B K. Integration by parts for heat kernel measures revisited. J Math Pures Appl, 1997, 76:703–737

    Article  MathSciNet  MATH  Google Scholar 

  12. Driver B K, Gordina M. Integrated Harnack inequalities on Lie groups. J Differential Geom, 2009, 83:501–550

    MathSciNet  MATH  Google Scholar 

  13. Driver B K, Melcker T. Hypoelliptic heat kernel inequalities on the Heisenberg group. J Funct Anal, 2005, 221:340–365

    Article  MathSciNet  MATH  Google Scholar 

  14. Eldredge N. Gradient estimates for the subelliptic heat kernel on H-tpye groups. J Funct Anal, 2010, 258:504–533

    Article  MathSciNet  MATH  Google Scholar 

  15. Elworthy K D, Li X-M. Formulae for the derivatives of heat semigroups. J Funct Anal, 1994, 125:252–286

    Article  MathSciNet  MATH  Google Scholar 

  16. Gong F-Z, Wang F-Y. Heat kernel estimates with application to compactness of manifolds. Quart J Math, 2001, 52:171–180

    Article  MathSciNet  MATH  Google Scholar 

  17. Guillin A, Wang F-Y. Degenerate Fokker-Planck equations: Bismut formula, gradient estimate and Harnack inequality. J Differential Equations, 2012, 253:20–40

    Article  MathSciNet  MATH  Google Scholar 

  18. Li H-Q. Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg. J Funct Anal, 2006, 236:369–394

    Article  MathSciNet  MATH  Google Scholar 

  19. Li P, Yau S-T. On the parabolic kernel of the Schrödinger operator. Acta Math, 1986, 156:153–201

    Article  MathSciNet  Google Scholar 

  20. Wang F-Y. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab Theory Relat Fields, 1997, 109:417–424

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang F-Y. Harnack inequalities on manifolds with boundary and applications. J Math Pures Appl, 2010, 94:304–321

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang F-Y. Generalized curvature condition for subelliptic diffusion processes. ArXiv:1202.0778, 2012

    Google Scholar 

  23. Wang F-Y. Analysis for Diffusion Processes on Riemannian Manifolds. Singapore: World Scientific, 2013

    Book  Google Scholar 

  24. Wang F-Y. Derivative formula and gradient estimates for Gruschin type semigroups. J Theoret Probab, 2014, 27:80–95

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang F-Y. Integration by parts formula and shift Harnack inequality for stochastic equations. Ann Probab, 2014, 42:994–1019

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang F-Y, Xu L. Log-Harnack inequality for Gruschin type semigroups. Rev Mat Iberoam, 2014, 30:405–418

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang X. Stochastic flows and Bismut formulas for stochastic Hamiltonian systems. Stoch Proc Appl, 2010, 120:1929–1949

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Yu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, FY. Derivative formulas and Poincaré inequality for Kohn-Laplacian type semigroups. Sci. China Math. 59, 261–280 (2016). https://doi.org/10.1007/s11425-015-5084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-5084-3

Keywords

MSC(2010)

Navigation