Skip to main content
Log in

Does visualization enhance complex problem solving? The effect of causal mapping on performance in the computer-based microworld Tailorshop

  • Development Article
  • Published:
Educational Technology Research and Development Aims and scope Submit manuscript

Abstract

Causal mapping is often recognized as a technique to support strategic decisions and actions in complex problem situations. Such drawing of causal structures is supposed to particularly foster the understanding of the interaction of the various system elements and to further encourage holistic thinking. It builds on the idea that humans make use of mental maps to represent their environment and to make predictions about it. However, a profound theoretical underpinning and empirical research of the effects of causal mapping on problem solving is missing. This study compares a causal mapping approach with more common problem solving techniques utilizing the standardized computer-simulated microworld Tailorshop. Results show that causal mapping leads to a worse performance in managing the Tailorshop and was not associated with increased knowledge about the underlying system’s structure. We conclude that the successful representation of the causal structure and the control of a complex scenario require the concerted interplay of cognitive skills that go beyond drawing causal maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barth, C. M., & Funke, J. (2010). Negative affective environments improve complex problem solving performance. Cognition and Emotion, 24(7), 1259–1268. doi:10.1080/02699930903223766.

    Article  Google Scholar 

  • Berry, D. C., & Broadbent, D. E. (1987). The combination of explicit and implicit learning processes in task control. Psychological Research, 49(1), 7–15.

    Article  Google Scholar 

  • Blech, C., & Funke, J. (2006). Zur Reaktivität von Kausaldiagramm-Analysen beim komplexen Problemlösen. Zeitschrift Für Psychologie, 214(4), 185–195. doi:10.1026/0044-3409.214.4.185.

    Article  Google Scholar 

  • Brown, S. M. (1992). Cognitive mapping and repertory grids for qualitative survey research: Some comparative observations. Journal of Management Studies, 29(3), 287–307. doi:10.1111/j.1467-6486.1992.tb00666.x.

    Article  Google Scholar 

  • Bryson, J. M., Ackermann, F., Eden, C., & Finn, C. B. (2004). Visible thinking: Unlocking causal mapping for practical business results. Hoboken: Wiley.

    Google Scholar 

  • Clariana, R. B., Engelmann, T., & Yu, W. (2013). Using centrality of concept maps as a measure of problem space states in computer-supported collaborative problem solving. Educational Technology Research and Development, 61(3), 423–442.

    Article  Google Scholar 

  • Danner, D., Hagemann, D., Holt, D., Hager, M., Schankin, A., Wüstenberg, S., & Funke, J. (2011). Measuring performance in dynamic decision making. Journal of Individual Differences, 32(4), 225–233.

    Article  Google Scholar 

  • Dörner, D. (1997). The logic of failure. Recognizing and avoiding error in complex situations. New York: Basic Books.

    Google Scholar 

  • Dörner, D., Kreuzig, H. W., Reither, F., & Stäudel, T. (1983). Lohhausen. Vom Umgang mit Unbestimmtheit und Komplexität. Bern: Huber.

    Google Scholar 

  • Doyle, J. K. (1997). The cognitive psychology of systems thinking. System Dynamics Review, 13(3), 253–265. doi:10.1002/(SICI)1099-1727(199723)13:3<253:AID-SDR129>3.0.CO;2-H.

    Article  Google Scholar 

  • Doyle, J. K., & Ford, D. N. (1998). Mental models concepts for system dynamics research. System Dynamics Review, 14(1), 3–29. doi:10.1002/(SICI)1099-1727(199821)14:1<3:AID-SDR140>3.0.CO;2-K.

    Article  Google Scholar 

  • Doyle, J. K., & Ford, D. N. (1999). Mental models concepts revisited: some clarifications and a reply to Lane. System Dynamics Review, 15(4), 411–415. doi:10.1002/(SICI)1099-1727(199924)15:4<411:AID-SDR181>3.0.CO;2-R.

    Article  Google Scholar 

  • Eden, C. (1988). Cognitive mapping. European Journal of Operational Research, 36(1), 1–13. doi:10.1016/0377-2217(88)90002-1.

    Article  Google Scholar 

  • Eden, C., Ackermann, F., & Cropper, S. (1992). The analysis of cause maps. Journal of Management Studies, 29(3), 309–324. doi:10.1111/j.1467-6486.1992.tb00667.x.

    Article  Google Scholar 

  • Eden, C., & Huxham, C. (1988). Action-oriented strategic management. The Journal of the Operational Research Society, 39(10), 889–899. doi:10.2307/2583040.

    Article  Google Scholar 

  • Eden, C., Jones, S., & Sims, D. (1979). Thinking in organizations. New York: Macmillan.

    Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.

    Article  Google Scholar 

  • Fiol, C. M., & Huff, A. S. (1992). Maps for managers: Where are we? Where do we go from here? Journal of Management Studies, 29(3), 267–285. doi:10.1111/j.1467-6486.1992.tb00665.x.

    Article  Google Scholar 

  • Forrester, J. W. (1961). Industrial dynamics. Portland: Productivity Press.

    Google Scholar 

  • Frensch, P., & Funke, J. (1995). Complex problem solving: The European perspective. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Funke, J. (1983). Einige Bemerkungen zu Problemen der Problemlöseforschung oder: Ist Testintelligenz doch ein Prädiktor? Diagnostica, 29, 283–302.

    Google Scholar 

  • Funke, J. (2001). Dynamic systems as tools for analysing human judgement. Thinking and Reasoning, 7(1), 69–89. doi:10.1080/13546780042000046.

    Article  Google Scholar 

  • Funke, J. (2003). Problemlösendes Denken. Stuttgart: Kohlhammer.

    Google Scholar 

  • Funke, J. (2012). Complex problem solving. In N. M. Seel (Ed.), Encyclopedia of the sciences of learning (pp. 682–685). Heidelberg: Springer.

    Google Scholar 

  • Gobert, J. D., & Clement, J. J. (1999). Effects of student generated diagrams versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 36(1), 39–53. doi:10.1002/(SICI)1098-2736(199901)36:1<39:AID-TEA4>3.0.CO;2-I.

    Article  Google Scholar 

  • Huff, A. S. (Ed.). (2002). Mapping strategic knowledge. London: Sage publishing.

    Google Scholar 

  • Hutchins, E. (1990). The technology of team navigation. In J. Galegher, R. E. Kraut, & C. Egido (Eds.), Intellectual teamwork: Social and technical bases of collaborative work (pp. 191–220). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Hyerle, D. (2009). Visual tools for transforming information into knowledge. Thousand Oaks: Corwin Press.

    Google Scholar 

  • Kersting, M. (1991). Wissensdiagnostik beim Problemlösen. Entwicklung und erste Bewährungskontrolle eines kontentvalide konstruierten problemspezifischen Wissenstests [Diploma Thesis]. Berlin: Freie Universität Berlin.

  • Kersting, M., & Süß, H. M. (1995). Kontentvalide Wissensdiagnostik und Problemlösen: Zur Entwicklung, testtheoretischen Begründung und empirischen Bewährung eines problemspezifischen Diagnoseverfahrens. Zeitschrift Für Pädagogische Psychologie, 9, 83–93.

    Google Scholar 

  • Klocke, U. (2004). Folgen von Machtausübung und Einflussnahme für Wissenszuwachs und Effektivität in Kleingruppen. Berlin: dissertation.de.

  • Kluge, A. (2004). Wissenserwerb für das Steuern komplexer Systeme [Knowledge aquisition for the control of complex systems]. Lengerich: Pabst Science Publishers.

    Google Scholar 

  • Kluwe, R. H. (1979). Wissen und Denken. Stuttgart: Kohlhammer.

    Google Scholar 

  • Lane, D. C. (2008). The emergence and use of diagramming in system dynamics: a critical account. Systems Research and Behavioral Science, 25(1), 3–23. doi:10.1002/sres.826.

    Article  Google Scholar 

  • Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65–100. doi:10.1016/S0364-0213(87)80026-5.

    Article  Google Scholar 

  • Liepmann, D. (Ed.). (2007). Intelligenz-Struktur-Test 2000 R (2nd ed.). Göttingen: Hogrefe.

    Google Scholar 

  • Lovett, M. C., & Anderson, J. R. (1996). History of success and current context in problem solving: Combined influences on operator selection. Cognitive Psychology, 31(2), 168–217.

    Article  Google Scholar 

  • Luchins, A. S. (1942). Mechanization in problem solving–the effect of Einstellung. Psychological Monographs, 54(248), 1–95.

    Google Scholar 

  • Mayer, R. E., & Anderson, R. B. (1991). Animations need narrations: An experimental test of a dual-coding hypothesis. Journal of Educational Psychology, 83(4), 484–490. doi:10.1037/0022-0663.83.4.484.

    Article  Google Scholar 

  • Meyer, B., & Scholl, W. (2009). Complex problem solving after unstructured discussion: Effects of information distribution and experience. Group Processes and Intergroup Relations, 12(4), 495–515. doi:10.1177/1368430209105045.

    Article  Google Scholar 

  • Michie, S., & Abraham, C. (2004). Interventions to change health behaviours: Evidence-based or evidence-inspired? Psychology and Health, 19(1), 29–49. doi:10.1080/0887044031000141199.

    Article  Google Scholar 

  • Montibeller, G., & Belton, V. (2006). Causal maps and the evaluation of decision options: A review. The Journal of the Operational Research Society, 57(7), 779–791.

    Article  Google Scholar 

  • Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Öllinger, M., & Goel, V. (2010). Problem Solving. In B. Glatzeder, V. Goel, & A. von Müller (Eds.), Towards a Theory of Thinking (pp. 3–21). Berlin-Heidelberg: Springer. Retrieved from http://dx.doi.org/10.1007/978-3-642-03129-8_1

  • Öllinger, M., Jones, G., & Knoblich, G. (2008). Investigating the effect of mental set on insight problem solving. Experimental Psychology, 55(4), 269–282.

    Article  Google Scholar 

  • Paivio, A. (1971). Imagery and cognitive processes. New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Paivio, A. (1986). Mental representations. A dual coding approach. New York: Oxford University Press.

    Google Scholar 

  • Parmenides Foundation (2011). Parmenides Eidos Suite ® (Version 7.8) [computer software]

  • Plate, R. (2010). Assessing individuals’ understanding of nonlinear causal structures in complex systems. System Dynamics Review, 26(1), 19–33. doi:10.1002/sdr.432.

    Article  Google Scholar 

  • Preußler, W. (1998). Strukturwissen als Voraussetzung für die Steuerung komplexer dynamischer Systeme. Zeitschrift Für Experimentelle Psychologie, 45(3), 218–240.

    Google Scholar 

  • Putz-Osterloh, W., & Lüer, G. (1991). Über die Vorhersagbarkeit komplexer Problemlöseleistungen durch Ergebnisse in einem Intelligenztest. Zeitschrift Für Experimentelle Und Angewandte Psychologie, 28, 309–334.

    Google Scholar 

  • Reitman, W. R. (1964). Heuristic decision procedures, open constraints, and the structure of Ill-defined problems. In M. W. Shelly & G. L. Bryan (Eds.), Human judgments and optimality (pp. 282–315). New York: John Wiley and Sons.

    Google Scholar 

  • Rigas, G., Carling, E., & Brehmer, B. (2002). Reliability and validity of performance measures in microworlds. Intelligence, 30(5), 463–480. doi:10.1016/S0160-2896(02)00121-6.

    Article  Google Scholar 

  • Scavarda, A. J., Bouzdin-Chameeva, T., Goldstein, S. M., Hays, J. M., & Hill, A. V. (2004). A review of the causal mapping practice and research literature. Presented at the Second World Conference on POM and 15th Annual POM Conference, Cancun, Mexico.

  • Shaft, T. M., & Vessey, I. (2006). The role of cognitive fit in the relationship between software comprehension and modification. MIS Quarterly, 30(1), 29–55.

    Google Scholar 

  • Sterman, J. D. (2000). Business dynamics. Systems thinking and modeling for a complex world. Boston: McGraw-Hill.

    Google Scholar 

  • Süß, H.-M. (1996). Intelligenz, Wissen und Problemlösen. Kognitive Voraussetzungen für erfolgreiches Handeln bei computersimulierten Problemen. Göttingen: Hogrefe.

    Google Scholar 

  • Süß, H.-M., Kersting, M., & Oberauer, K. (1993). Zur Vorhersage von Steuerungsleistungen an computersimulierten Systemen durch Wissen und Intelligenz [On the predictability of control performance on computer-simulated systems by knowledge and intelligence]. Zeitschrift Für Differentielle Und Diagnostische Psychologie, 14, 189–203.

    Google Scholar 

  • Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: Literature review and synthesis. Educational Psychology Review, 17(4), 285–325. doi:10.1007/s10648-005-8136-3.

    Article  Google Scholar 

  • Vessey, I. (1991). Cognitive fit: A theory-based analysis of the graphs versus tables literature. Decision Sciences, 22(2), 219–240. doi:10.1111/j.1540-5915.1991.tb00344.x.

    Article  Google Scholar 

  • White, L. (2006). Evaluating problem-structuring methods: Developing an approach to show the value and effectiveness of PSMs. The Journal of the Operational Research Society, 57(7), 842–855.

    Article  Google Scholar 

  • Wittmann, W., & Hattrup, K. (2004). The relationship between performance in dynamic systems and intelligence. Systems Research and Behavioral Science, 21(4), 393–409. doi:10.1002/sres.653.

    Article  Google Scholar 

  • Wittmann, W., Süß, H.-M., & Oberauer, K. (1996). Determinanten komplexen Problemlösens. Retrieved November 3, 2011, from www.psychologie.uni-mannheim.de/psycho2_alt/publi/ps/ber09.pdf

  • Zhang, J. (1997). The nature of external representations in problem solving. Cognitive Science, 21(2), 179–217. doi:10.1207/s15516709cog2102_3.

    Article  Google Scholar 

  • Zhang, J., & Norman, D. A. (1994). Representations in distributed cognitive tasks. Cognitive Science, 18(1), 87–122.

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank Dr. Daniel Holt, University of Heidelberg, for his help in providing and installing the Tailorshop microworld.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Öllinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öllinger, M., Hammon, S., von Grundherr, M. et al. Does visualization enhance complex problem solving? The effect of causal mapping on performance in the computer-based microworld Tailorshop. Education Tech Research Dev 63, 621–637 (2015). https://doi.org/10.1007/s11423-015-9393-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11423-015-9393-6

Keywords

Navigation