Skip to main content

Advertisement

Log in

Neurotoxicity of silver nanoparticles in the animal brain: a systematic review and meta-analysis

  • Review Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Objective

About 30% of all nanoparticle products contain silver nanoparticles (AgNPs). With the increasing use of AgNPs in industry and medicine, concerns about the adverse effects on the environment, and the possible toxicity of these particles to primary cells and towards organs such as the brain and nervous system increased. In this paper, the toxicity of AgNPs in neurons and brain of animal models was investigated by a systematic review and meta-analysis.

Methods

The full texts of 26 relevant studies were reviewed and analyzed. Data from nine separate experiments in five articles were analyzed by calculating the standardized mean differences between viability of treated animals and untreated groups. Subgroup analysis was conducted. In addition, a systematic review provided a complete, exhaustive summary of all articles.

Results

The results of the meta-analysis showed that AgNPs are able to cause neuronal death after entering the brain (standardized mean difference (SMD) = 2.87; 95% confidence interval (CI) 2.1–3.61; p < 0.001). AgNPs sized smaller or larger than 10 nm could both cause neuronal cell death. This effect could be observed for a long time (up to 6 months). Neurons from embryonic animals whose mothers had been exposed to AgNPs during pregnancy were affected as much as animals that were themselves exposed to AgNPs. Toxic effects of AgNPs on memory and cognitive function were also observed. Studies have shown that inflammation and increased oxidative stress followed by apoptosis are likely to be the main mechanisms of AgNPs toxicity.

Conclusion

AgNPs can enter the brain with a long half-life and it can cause neuronal death after entering the brain. AgNPs can manifest proinflammatory cascades in the CNS and BBB. Some toxic effects were detected in the cerebral cortex, hypothalamus, hippocampus and others. Studies have shown that inflammation and increased oxidative stress lead to apoptosis, the main mechanism of AgNPs neurotoxicity, which can be caused by an increase in silver ions from AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author (FR) on request.

Code availability

Not applicable.

References

  1. Haase A, Rott S, Mantion A et al (2012) Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci 126:457–468. https://doi.org/10.1093/toxsci/kfs003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ataei ML, Ebrahimzadeh-Bideskan AR (2014) The effects of nano-silver and garlic administration during pregnancy on neuron apoptosis in rat offspring hippocampus. Iran J Basic Med Sci 17:411–418. https://doi.org/10.22038/ijbms.2014.2925

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marin S, Vlasceanu GM, Tiplea RE et al (2015) Applications and toxicity of silver nanoparticles—a recent review. Curr Top Med Chem 15(16):1596–1604

    Article  CAS  Google Scholar 

  4. Ramezani M, Asghari S, Gerami M, Ramezani F, Karimi Abdolmaleki M (2020) Effect of silver nanoparticle treatment on the expression of key genes Involved in glycosides biosynthetic pathway in stevia rebaudiana B. Plant. Sugar Tech 22(3):518–527. https://doi.org/10.1007/s12355-019-00786-x

    Article  CAS  Google Scholar 

  5. Ramezani M, Ramezani F, Gerami M (2019) Nanotechnology for agriculture: crop production & protection. Springer, p 233. https://doi.org/10.1007/978-981-32-9374-8

    Book  Google Scholar 

  6. Skalska J, Strużyńska L (2015) Toxic effects of silver nanoparticles in mammals—does a risk of neurotoxicity exist ? Folia Neuropathol 53(4):281–300. https://doi.org/10.5114/fn.2015.56543

    Article  PubMed  Google Scholar 

  7. Ge L, Li Q, Wang M et al (2014) Nanosilver particles in medical applications : synthesis, performance, and toxicity. Int J Nanomed 9:2399–2407. https://doi.org/10.2147/IJN.S55015

    Article  Google Scholar 

  8. Strużyńska L, Skalska J (2018) Mechanisms underlying neurotoxicity of silver nanoparticles. Cell Mol Toxicol Nanopart 1048:227–250. https://doi.org/10.1007/978-3-319-72041-8_14

    Article  CAS  Google Scholar 

  9. Austin LA, Mackey MA, Dreaden MAE-S (2014) The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 88:1391–1417. https://doi.org/10.1007/s00204-014-1245-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Locatelli E, Naddaka M, Uboldi C et al (2014) Targeted delivery of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect against glioblastoma. Nanomedicine 9:839–849. https://doi.org/10.2217/nnm.14.1

    Article  CAS  PubMed  Google Scholar 

  11. Lee S, Suk M, Lee S et al (2015) Target-specific near-IR induced drug release and photothermal therapy with accumulated Au/Ag hollow nanoshells on pulmonary cancer cell membranes. Biomaterials 45:81–92. https://doi.org/10.1016/j.biomaterials

    Article  PubMed  Google Scholar 

  12. Luther EM, Koehler Y, Diendorf J et al (2011) Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology. https://doi.org/10.1088/0957-4484/22/37/375101

    Article  PubMed  Google Scholar 

  13. Hsiao IL, Hsieh YK, Chuang CY et al (2017) Effects of silver nanoparticles on the interactions of neuron- and glia-like cells: Toxicity, uptake mechanisms, and lysosomal tracking. Environ Toxicol 32:1742–1753. https://doi.org/10.1002/tox.22397

    Article  CAS  PubMed  Google Scholar 

  14. Skalska J, Frontczak-Baniewicz M, Struzyńska L (2015) Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. Neurotoxicology 46:145–154. https://doi.org/10.1016/j.neuro.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  15. Antonic A, Sena ES, Lees JS et al (2013) Stem cell transplantation in traumatic spinal cord injury: a systematic review and meta-analysis of animal studies. PLoS ONE 11(12):e1001738. https://doi.org/10.1371/journal.pbio.1001738

    Article  Google Scholar 

  16. Liu P, Huang Z, Gu N (2013) Exposure to silver nanoparticles does not affect cognitive outcome or hippocampal neurogenesis in adult mice. Ecotoxicol Environ Saf 87:124–130. https://doi.org/10.1016/j.ecoenv.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  17. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12. https://doi.org/10.1016/j.toxlet.2007.10.004

    Article  CAS  PubMed  Google Scholar 

  18. Rahman MF, Wang J, Patterson TA et al (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187(1):15–21. https://doi.org/10.1016/j.toxlet.2009.01.020

    Article  CAS  PubMed  Google Scholar 

  19. Liu Y, Guan W, Ren G et al (2012) The possible mechanism of silver nanoparticle impact on hippocampal synaptic plasticity and spatial cognition in rats. Toxicol Lett 209:227–231. https://doi.org/10.1016/j.toxlet.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  20. Sharma HS, Ali SF, Hussain SM et al (2009) Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2009.GR09

    Article  PubMed  Google Scholar 

  21. Hadrup N, Loeschner K, Mortensen A et al (2012) The similar neurotoxic effects of nanoparticulate and ionic silver in vivo and in vitro. Neurotoxicology 33:416–423. https://doi.org/10.1016/j.neuro.2012.04.008

    Article  CAS  PubMed  Google Scholar 

  22. Ahmed MM, Hussein MMA (2017) Neurotoxic effects of silver nanoparticles and the protective role of rutin. Biomed Pharmacother 90:731–739. https://doi.org/10.1016/j.biopha.2017.04.026

    Article  CAS  PubMed  Google Scholar 

  23. Dan M, Wen H, Shao A, Xu L (2018) Silver nanoparticle exposure induces neurotoxicity in the rat hippocampus without increasing the blood-brain barrier permeability. J Biomed Nanotechnol 14:1330–1338. https://doi.org/10.1166/jbn.2018.2563

    Article  CAS  PubMed  Google Scholar 

  24. Fatemi Tabatabaie SR, Mehdiabadi B, Mori Bakhtiari N et al (2017) Silver nanoparticle exposure in pregnant rats increases gene expression of tyrosine hydroxylase and monoamine oxidase in offspring brain. Drug Chem Toxicol 40:440–447. https://doi.org/10.1080/01480545.2016.1255952

    Article  CAS  PubMed  Google Scholar 

  25. Krawczyńska A, Dziendzikowska K, Gromadzka-Ostrowska J et al (2015) Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renin-angiotensin system in brain. Food Chem Toxicol 85:96–105. https://doi.org/10.1016/j.fct.2015.08.005

    Article  CAS  PubMed  Google Scholar 

  26. Lebda MA, Sadek KM, Tohamy HG et al (2018) Potential role of α-lipoic acid and Ginkgo biloba against silver nanoparticles-induced neuronal apoptosis and blood-brain barrier impairments in rats. Life Sci 212:251–260. https://doi.org/10.1016/j.lfs.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  27. Lee HY, Choi YJ, Jung EJ et al (2010) Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation. J Nanoparticle Res 12:1567–1578. https://doi.org/10.1007/s11051-009-9666-2

    Article  CAS  Google Scholar 

  28. Yang N, Liu Y, Ji Y et al (2014) Motor coordination dysfunction induced by gold nanorods core/silver shell nanostructures in mice: Disruption in mitochondrial transport and neurotransmitter release. RSC Adv 4:59472–59480. https://doi.org/10.1039/c4ra13301c

    Article  CAS  Google Scholar 

  29. Xu L, Xu QH, Zhou XY et al (2017) Mechanisms of silver_nanoparticles induced hypopigmentation in embryonic zebrafish. Aquat Toxicol 184:49–60. https://doi.org/10.1016/j.aquatox.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  30. Xu L, Shao A, Zhao Y et al (2015) Neurotoxicity of silver nanoparticles in rat brain after intragastric exposure. J Nanosci Nanotechnol 15:4215–4223. https://doi.org/10.1166/jnn.2015.9612

    Article  CAS  PubMed  Google Scholar 

  31. Kalynovskyi VY, Pustovalov AS, Grodzyuk GY et al (2016) Effects of systemic introductions of nanoparticles and salts of gold and silver on the size of the nuclei of hypothalamic neurons in male rats. Neurophysiology 48:259–263. https://doi.org/10.1007/s11062-016-9597-3

    Article  CAS  Google Scholar 

  32. Klingelfus T, Lirola JR, Oya Silva LF et al (2017) Acute and long-term effects of trophic exposure to silver nanospheres in the central nervous system of a neotropical fish Hoplias intermedius. Neurotoxicology 63:146–154. https://doi.org/10.1016/j.neuro.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  33. Yin N, Zhang Y, Yun Z et al (2015) Silver nanoparticle exposure induces rat motor dysfunction through decrease in expression of calcium channel protein in cerebellum. Toxicol Lett 237:112–120. https://doi.org/10.1016/j.toxlet.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  34. Xin Q, Rotchell JM, Cheng J et al (2015) Silver nanoparticles affect the neural development of zebrafish embryos. J Appl Toxicol 35:1481–1492. https://doi.org/10.1002/jat.3164

    Article  CAS  PubMed  Google Scholar 

  35. Wu J, Yu C, Tan Y et al (2015) Effects of prenatal exposure to silver nanoparticles on spatial cognition and hippocampal neurodevelopment in rats. Environ Res 138:67–73. https://doi.org/10.1016/j.envres.2015.01.022

    Article  CAS  PubMed  Google Scholar 

  36. Chen IC, Hsiao IL, Lin HC et al (2016) Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability. Environ Toxicol Pharmacol 47:108–118. https://doi.org/10.1016/j.etap.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  37. Muth-Köhne E, Sonnack L, Schlich K et al (2013) The toxicity of silver nanoparticles to zebrafish embryos increases through sewage treatment processes. Ecotoxicology 22:1264–1277. https://doi.org/10.1007/s10646-013-1114-5

    Article  CAS  PubMed  Google Scholar 

  38. Dąbrowska-Bouta B, Zięba M, Orzelska-Górka J et al (2016) Influence of a low dose of silver nanoparticles on cerebral myelin and behavior of adult rats. Toxicology 363–364:29–36. https://doi.org/10.1016/j.tox.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  39. Dąbrowska-Bouta B, Sulkowski G, Frontczak-Baniewicz M et al (2018) Ultrastructural and biochemical features of cerebral microvessels of adult rat subjected to a low dose of silver nanoparticles. Toxicology 408:31–38. https://doi.org/10.1016/j.tox.2018.06.009

    Article  CAS  PubMed  Google Scholar 

  40. Tang J, Xiong L, Wang S et al (2008) Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Appl Surf Sci 255:502–504. https://doi.org/10.1016/j.apsusc.2008.06.058

    Article  CAS  Google Scholar 

  41. Khan AM, Korzeniowska B, Gorshkov V et al (2019) Silver nanoparticle-induced expression of proteins related to oxidative stress and neurodegeneration in an in vitro human blood-brain barrier model. Nanotoxicology 13:221–239. https://doi.org/10.1080/17435390.2018.1540728

    Article  CAS  PubMed  Google Scholar 

  42. Dąbrowska-Bouta B, Sulkowski G, Strużyński W, Strużyńska L (2019) Prolonged exposure to silver nanoparticles results in oxidative stress in cerebral myelin. Neurotox Res 35:495–504. https://doi.org/10.1007/s12640-018-9977-0

    Article  CAS  PubMed  Google Scholar 

  43. Redza-dutordoir M, Averill-bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim et Biophys Acta BBA Mol Cell Res 1863:2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012

    Article  CAS  Google Scholar 

  44. Mittal M, Siddiqui MR, Tran K et al (2014) Reactive Oxygen Species in Inflammation and Tissue Injury 20:1126–1167. https://doi.org/10.1089/ars.2012.5149

    Article  CAS  Google Scholar 

  45. Ganjuri M, Moshtaghian J, Ghaedi K (2015) Effect of nanosilver particles on procaspase-3 expression in newborn rat brain. Cell J (Yakhteh) 17:489–493. https://doi.org/10.22074/cellj.2015.23

    Article  Google Scholar 

  46. Lu J, Zhang Z, Ma X et al (2020) Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy. Exp Eye Res 190:107886. https://doi.org/10.1016/j.exer.2019.107886

    Article  CAS  PubMed  Google Scholar 

  47. Sawai H, Ochi N, Matsuo Y et al (2009) PTEN regulate angiogenesis through PI3K/Akt/VEGF signaling pathway in human pancreatic cancer cells. Mol Cell Biochem 331:161–171. https://doi.org/10.1007/s11010-009-0154-x

    Article  CAS  PubMed  Google Scholar 

  48. Kanai Y, Okada Y, Tanaka Y et al (2000) KIF5C, a novel neuronal kinesin enriched in motor neurons. J Neurosci 20:6374–6384. https://doi.org/10.1523/JNEUROSCI

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feil R, Hartmann J, Luo C et al (2002) Purkinje cell—specific ablation of cGMP-dependent protein kinase I. J Cell Biol. https://doi.org/10.1083/jcb.200306148

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bagheri-Abassi F, Alavi H, Mohammadipour A et al (2015) The effect of silver nanoparticles on apoptosis and dark neuron production in rat hippocampus. Iran J Basic Med Sci 18:644–648. https://doi.org/10.22038/ijbms.2015.4644

    Article  PubMed  PubMed Central  Google Scholar 

  51. Benturquia N, Descartes P, Marie-claire C (2008) Involvement of D1 dopamine receptor in MDMA-induced locomotor activity and striatal gene expression in mice. Brain Res 1211:1–5. https://doi.org/10.1016/j.brainres

    Article  CAS  PubMed  Google Scholar 

  52. André Nieoullon AC (2003) Dopamine—a key regulator to adapt action, emotion, motivation and cognition. Curr Opin Neurol 16(2):S3-9

    Article  Google Scholar 

Download references

Funding

FR was supported by [IRAN University of Medical Sciences], Grants Number [98-3-32-16261]. MRH was supported by [US NIH] Grant] numbers [R01AI050875] and [R21AI121700].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael R. Hamblin or Fatemeh Ramezani.

Ethics declarations

Conflict of interests

Disclosure of potential conflicts of interest: Michael R Hamblin declares the potential conflicts of interest described in Supplementary materials and other authors declare no conflict of interest.

Research involving Human Participants and/or Animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (DOCX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janzadeh, A., Behroozi, Z., saliminia, F. et al. Neurotoxicity of silver nanoparticles in the animal brain: a systematic review and meta-analysis. Forensic Toxicol 40, 49–63 (2022). https://doi.org/10.1007/s11419-021-00589-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-021-00589-4

Keywords

Navigation