Skip to main content
Log in

A high-performance control algorithm based on a curvature-dependent decoupled planning approach and flatness concepts for non-holonomic mobile robots

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

This paper proposes a high-performance control strategy for an efficient manipulation of non-holonomic mobile robots in environments cluttered with static obstacles. Firstly, and based on the decoupled planning approach, a new algorithm for fast and safe motions planning is introduced. This algorithm defines the robot path as a sequence of smoothly interpolated functions using (\(\eta ^3\)) splines and then assigns a suitable curvature-dependent smooth motion profile to describe the robot velocity along such path. In order to achieve fast motions which fulfill all system constraints, the velocity profile is defined as a chain of local profiles smoothly linked together. Each of the local profiles is defined as a smooth limited-jerk function, which is obtained by applying a moving average FIR filter to a classic limited-acceleration profile. The appropriate bounds on velocities and accelerations of trapezoidal acceleration profiles are fixed according to the physical limits of the robot and the maximum bounds on the curvature in the corresponding path segment. The boundary conditions of the local profiles are assigned to ensure that the robot moves from its starting position without stopping until it reaches the goal configuration. Once the motion reference trajectories are obtained, a robust flatness-based feedback controller was defined to ensure the robust and the accurate execution of the planned tasks. Practical tests, using the P3DX model, have been reported to evaluate the performances of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Béarée R, Olabi A (2013) Dissociated jerk-limited trajectory applied to time-varying vibration reduction. Robot Comput-Integrated Manuf 29(2):444–453. https://doi.org/10.1016/j.rcim.2012.09.014

    Article  Google Scholar 

  2. Biagiotti L, Melchiorri C (2012) FIR filters for online trajectory planning with time- and frequency-domain specifications. Control Eng Pract 20(12):1385–1399. https://doi.org/10.1016/j.conengprac.2012.08.005

    Article  Google Scholar 

  3. Blajer W, Kołodziejczyk K (2007) Motion planning and control of gantry cranes in cluttered work environment. IET Control Theory Appl 1(5):1370–1379

    Article  Google Scholar 

  4. Braghin F, Cheli F, Melzi S, Sabbioni E (2008) Race driver model. Comput Struct 86(13–14):1503–1516. https://doi.org/10.1016/j.compstruc.2007.04.028

    Article  Google Scholar 

  5. Campion G, Chung W (2008) Wheeled robots. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin, pp 391–410

    Chapter  Google Scholar 

  6. Choset HM, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE, Thrun S (2006) Principles of robot motion, theory, algorithms and implementations. Robotica 24(02):271. https://doi.org/10.1017/S0263574706212803

    MATH  Google Scholar 

  7. Fliess M, Levine J, Martin P, Rouchon P (1993) On differentially flat nonlinear systems. In: IFAC Symposia series, number 7, pp 159–163. ISBN 0080419011

  8. Fritscht FN, Carlson RE (1980) Monotone piecewise cubic interpolation*. SIAM J Numer Anal 17(2):238–246. https://doi.org/10.1137/0717021

    Article  MathSciNet  MATH  Google Scholar 

  9. Gasparetto A, Boscariol P, Lanzutti A, Vidoni R (2012) Trajectory planning in robotics. Math Comput Sci 6(3):269–279. https://doi.org/10.1007/s11786-012-0123-8

    Article  MathSciNet  Google Scholar 

  10. Gonzalez D, Pérez J, Milanés V, Nashashibi F (2016) A review of motion planning techniques for automated vehicles. IEEE Trans Intell Transp Syst 17(4):1135–1145. https://doi.org/10.1109/TITS.2015.2498841

    Article  Google Scholar 

  11. Hagenmeyer V, Delaleau E (2003) Robustness analysis of exact feedforward linearization based on differential flatness. Automatica 39:1941–1946. https://doi.org/10.1016/S0005-1098(03)00215-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Khalil W, Dombre E (2000) Modeling identification and control of robots. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  13. Kim Y, Kim BK (2017) Time-optimal trajectory planning based on dynamics for differential-wheeled mobile robots with a geometric corridor. IEEE Trans Ind Electron 64(7):5502–5512

    Article  Google Scholar 

  14. Klančar G, Zdešar A, Blažič S, Škrjanc I (2017) Wheeled mobile robotics: from fundamentals towards autonomous systems’. Butterworth-Heinemann, Oxford

    Google Scholar 

  15. Lambrechts P, Boerlage M, Steinbuch M (2005) Trajectory planning and feedforward design for electromechanical motion systems. Control Eng Pract 13(2):145–157. https://doi.org/10.1016/j.conengprac.2004.02.010

    Article  Google Scholar 

  16. Laumond J-P (1998) Robot motion planning and control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036069. ISBN 3540762191

  17. Levant A (1998) Robust exact differentiation via sliding mode technique. Automatica 34(3):379–384. https://doi.org/10.1016/S0005-1098(97)00209-4

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu GH, Wong YS, Zhang YF, Loh HT (2002) Adaptive fairing of digitized point data with discrete curvature. Comput Aided Des 34(4):309–320. https://doi.org/10.1016/S0010-4485(01)00091-4

    Article  Google Scholar 

  19. Lo Bianco CG, Gerelli O (2010) Generation of paths with minimum curvature derivative with \(\eta \)3-splines. IEEE Trans Autom Sci Eng 7(2):249–256. https://doi.org/10.1109/TASE.2009.2023206

    Article  Google Scholar 

  20. Luviano-Juárez A, Cortés-Romero J, Sira-Ramírez H (2014) Trajectory tracking control of a mobile robot through a flatness-based exact feedforward linearization scheme. J Dyn Syst Meas Control 137(5):051001. https://doi.org/10.1115/1.4028872

    Article  Google Scholar 

  21. Oriolo G, De Luca A, Vendittelli M (2002) WMR control via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Trans Control Syst Technol 10(6):835–852. https://doi.org/10.1109/TCST.2002.804116

    Article  Google Scholar 

  22. Piazzi A, Lo Bianco CG, Romano M (2007) Splines for the smooth path generation of wheeled mobile robots. IEEE Trans Robot 23(5):1089–1095. https://doi.org/10.1109/TRO.2007.903816

    Article  Google Scholar 

  23. Ping R, Chan M, Stol KA, Roger Halkyard C (2013) Annual reviews in control: review of modelling and control of two-wheeled robots. Annu Rev Control 37(1):89–103. https://doi.org/10.1016/j.arcontrol.2013.03.004

    Article  Google Scholar 

  24. Shin KG, Mckay ND (1985) Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans Autom Control 30(6):531–541. https://doi.org/10.1109/TAC.1985.1104009

    Article  MATH  Google Scholar 

  25. Veslin E, Slama J, Suell Dutra M, Lengerke O (2011) Motion planning on mobile robots using differential flatness. IEEE Latin Am Trans 9(7):1006–1011. https://doi.org/10.1109/TLA.2011.6129695

    Article  Google Scholar 

  26. Siciliano B, Sciavicco L, Villani L, Oriolo G (2008) Robotics: modelling, planning and control, 1st edn. Springer, London

    Google Scholar 

  27. Yang H, Guo M, Xia Y, Cheng L (2018) Trajectory tracking for wheeled mobile robots via model predictive control with softening constraints. IET Control Theory Appl 12:206–214. https://doi.org/10.1049/iet-cta.2017.0395

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oussama Boutalbi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix A: Proof of Proposition 1

From Eqs. 2 and 15, the left and right wheels velocities may be written as:

$$\begin{aligned} v_R= & {} v+lw = v(1+k(s)l) \\ v_L= & {} v-lw = v(1-k(s)l) \end{aligned}$$

where k denotes the curvature of the generated path. Then one can get:

$$\begin{aligned} v_R= & {} \psi (t)(1+k(s)l) \\ v_L= & {} \psi (t)(1-k(s)l) \end{aligned}$$

Thus, the velocity limits on the right wheel are given as:

$$\begin{aligned} |v_{R}|\le |\psi (t)| (1+|k(s)|l) \le v_{\max } \end{aligned}$$

which implies that:

$$\begin{aligned} |\psi (t)| (1+|k(s)|l) \le v_{\max } \end{aligned}$$

Note that \( (1+|k(s)|l) > 0 \) , then one can conclude that:

$$\begin{aligned} \dfrac{|\psi (t)| (1+|k(s)|l)}{(1+|k(s)|l)} \le \dfrac{v_{\max }}{(1+|k(s)|l)} \end{aligned}$$

Finally, one can conclude:

$$\begin{aligned} |\psi (t)| \le \psi _{\max } =\dfrac{v_{\max }}{(1+|k(s)|l)} \end{aligned}$$

The same conclusion may be obtained considering the equation that represents the linear velocity of the left wheel \( v_L \).

1.2 Appendix B: \( \eta ^3 \) Interpolation parameters

Given any two sequential points A and B defined with the following extended representation:

$$\begin{aligned} A=[X_A \ Y_A \ \theta _A \ k_A \ k_A^\prime ] , B=[X_B \ Y_B \ \theta _B \ k_B \ k_B^\prime ] \end{aligned}$$

then the two points may be interpolated, while satisfying all boundary conditions, using the seventh-order polynomials as in Eq. 32, where the parameters \( \alpha _i \) and \( \beta _i \) are given as:

$$\begin{aligned} \alpha _0= & {} X_A \\ \alpha _1= & {} \eta _1 \cos (\theta _A)\\ \alpha _2= & {} \dfrac{1}{2}\eta _2 \cos (\theta _A) - \dfrac{1}{2} \eta _1^2 k_A \sin (\theta _A) \\ \alpha _3= & {} \dfrac{1}{6}\eta _5 \cos (\theta _A)-\dfrac{1}{6}(\eta _1^3 k_A^\prime + 3 \eta _1\eta _3 k_A)\sin (\theta _A)\\ \alpha _4= & {} 35(X_B-X_A)-\left( 20\eta _1+5\eta _3+ \dfrac{2}{3}\eta _5\right) \cos (\theta _A) \\&+\left( 5 \eta _1^2 k_A+\dfrac{2}{3} \eta _1^3k_A^\prime +2\eta _1\eta _3k_A\right) \sin (\theta _A)\\&-\left( 15\eta _2-\dfrac{5}{2}\eta _4 +\dfrac{1}{6}\eta _6\right) \cos (\theta _B)\\&-\left( \dfrac{5}{2} \eta _2^2 k_B -\dfrac{1}{6} \eta _2^3 k_B^\prime - \dfrac{1}{2} \eta _2 \eta _4 k_B\right) \sin (\theta _B)\\ \alpha _5= & {} -84 (X_B-X_A)+(45\eta _1+10\eta _3+\eta _5) \cos (\theta _A)\\&-(10 \eta _1^2k_A+ \eta _1^3 k_A^\prime +3\eta _1 \eta _3 k_A) \sin (\theta _A) \\&+\left( 39 \eta _2 - 7\eta _4+\dfrac{1}{2}\eta _6\right) \cos (\theta _B) \\&+\left( 7 \eta _2^2 k_B-\dfrac{1}{2}\eta _2^3 k_B^\prime - \dfrac{3}{2} \eta _2 \eta _4 k_B\right) \sin (\theta _B) \\ \alpha _6= & {} 70(X_B-X_A)-\left( 36\eta _1+\dfrac{15}{2}\eta _3+\dfrac{2}{3} \eta _5\right) \cos (\theta _A) \\&+\left( \dfrac{15}{2} \eta _1^2 k_A+\dfrac{2}{3} \eta _1^3 k_A^\prime +2 \eta _1 \eta _3 k_A\right) \sin (\theta _A) \\&-\left( 34 \eta _2-\dfrac{13}{2} \eta _4+\dfrac{1}{2} \eta _6\right) \cos (\theta _B)\\&-\left( \dfrac{13}{2} \eta _2^2 k_B-\dfrac{1}{2} \eta _2^3 k_B^\prime -\dfrac{3}{2} \eta _2 \eta _4 k_B\right) \sin (\theta _B) \\ \alpha _7= & {} -20(X_B-X_A)+\left( 10 \eta _1+2 \eta _3+\dfrac{1}{6}\eta _5\right) \cos (\theta _A) \\&-\left( 2 \eta _1^2 k_A+\dfrac{1}{6}\eta _1^3 k_A^\prime + \dfrac{1}{2}\eta _1 \eta _3 k_A\right) \sin (\theta _A)\\&+ \left( 10 \eta _2-2 \eta _4+\dfrac{1}{6} \eta 6\right) \cos (\theta _B) +2 \eta _2^2 k_B\\&-\dfrac{1}{6}\eta _2^3 k_B^\prime -\dfrac{1}{2}\eta _2 \eta _4 k_B)\sin (\theta _B) \end{aligned}$$
$$\begin{aligned} \beta _0= & {} Y_A \\ \beta _1= & {} \eta _1 \sin (\theta _A)\\ \beta _2= & {} \dfrac{1}{2}\eta _2 \sin (\theta _A) + \dfrac{1}{2} \eta _1^2 k_A \cos (\theta _A) \\ \beta _3= & {} \dfrac{1}{6}\eta _5 \sin (\theta _A)+\dfrac{1}{6}(\eta _1^3 k_A^\prime + 3 \eta _1\eta _3 k_A) \cos (\theta _A)\\ \beta _4= & {} 35(X_B-X_A)-\left( 20\eta _1+5\eta _3+ \dfrac{2}{3}\eta _5\right) \sin (\theta _A) \\&-\left( 5 \eta _1^2 k_A+\dfrac{2}{3} \eta _1^3k_A^\prime +2\eta _1\eta _3k_A\right) \cos (\theta _A)\\&-\left( 15\eta _2-\dfrac{5}{2}\eta _4 +\dfrac{1}{6}\eta _6\right) \sin (\theta _B)\\&+\left( \dfrac{5}{2} \eta _2^2 k_B -\dfrac{1}{6} \eta _2^3 k_B^\prime - \dfrac{1}{2} \eta _2 \eta _4 k_B\right) \cos (\theta _B)\\ \beta _5= & {} -84 (X_B-X_A)+(45\eta _1+10\eta _3+\eta _5) \sin (\theta _A)\\&+(10 \eta _1^2k_A+ \eta _1^3 k_A^\prime +3\eta _1 \eta _3 k_A) \cos (\theta _A) \\&+\left( 39 \eta _2 - 7\eta _4+\dfrac{1}{2}\eta _6\right) \sin (\theta _B) \\&+ \left( 7 \eta _2^2 k_B-\dfrac{1}{2}\eta _2^3 k_B^\prime - \dfrac{3}{2} \eta _2 \eta _4 k_B\right) \cos (\theta _B) \\ \beta _6= & {} 70(X_B-X_A)+\left( 36\eta _1+\dfrac{15}{2}\eta _3+\dfrac{2}{3} \eta _5\right) \sin (\theta _A) \\&+\left( \dfrac{15}{2} \eta _1^2 k_A+\dfrac{2}{3} \eta _1^3 k_A^\prime +2 \eta _1 \eta _3 k_A\right) \cos (\theta _A) \\&+\left( 34 \eta _2-\dfrac{13}{2} \eta _4+\dfrac{1}{2} \eta _6\right) \sin (\theta _B)\\&-\left( \dfrac{13}{2} \eta _2^2 k_B-\dfrac{1}{2} \eta _2^3 k_B^\prime -\dfrac{3}{2} \eta _2 \eta _4 k_B\right) \cos (\theta _B) \\ \beta _7= & {} -20(X_B-X_A)+\left( 10 \eta _1+2 \eta _3+\dfrac{1}{6}\eta _5\right) \sin (\theta _A) \\&+\left( 2 \eta _1^2 k_A+\dfrac{1}{6}\eta _1^3 k_A^\prime + 0.5\eta _1 \eta _3 k_A\right) \cos (\theta _A)\\&+ \left( 10 \eta _2 -2 \eta _4+\dfrac{1}{6} \eta _6\right) \sin (\theta _B) -\left( 2 \eta _2^2 k_B \right. \\&\left. -\dfrac{1}{6}\eta _2^3 k_B^\prime -\dfrac{1}{2}\eta _2 \eta _4 k_B\right) \cos (\theta _B) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutalbi, O., Benmahammed, K., Henni, K. et al. A high-performance control algorithm based on a curvature-dependent decoupled planning approach and flatness concepts for non-holonomic mobile robots. Intel Serv Robotics 12, 181–196 (2019). https://doi.org/10.1007/s11370-018-00270-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-018-00270-7

Keywords

Navigation