Skip to main content

Clay Mineralogy: Soil Carbon Stabilization and Organic Matter Interaction

  • Chapter
  • First Online:
Soil Carbon Stabilization to Mitigate Climate Change

Abstract

In recent time, concerns are rising related to climate change, and mitigation measure such as soil has caught attention for the research community as a reservoir for storage of atmospheric carbon dioxide (CO2). The soil organic carbon (SOC) stabilization mechanisms have recently received a lot of focus because of its significance in governing the global carbon (C) cycle. The aim of the present chapter lies in reviewing the existing understanding on soil organic matter (SOM) dynamics with particular mention toward the contribution of clay mineralogy in retention as well as the stabilization of organic C in the soil. Thorough knowledge of the SOC stabilization mechanisms would assist in implementing optimal management practices for storage of SOC, enhancing the soil structure, and lastly mitigating the emissions of greenhouse gases. In this chapter, the relationships existing between SOC dynamics with its sources as well as sinks, aspects controlling SOC sequestration, and several mechanisms involved in the process of SOC stabilization are discussed. The studies related to soil examination, management, and environmental factors that affect the SOC stabilization with a particular mention to the clay mineralogy are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

SOC:

Soil organic carbon

SOM:

Soil organic matter

UNFCCC:

United Nations Framework Convention on Climate Change

IPCC:

Intergovernmental Panel on Climate Change

GHGs:

Greenhouse gases

CO2:

Carbon dioxide

CH4:

Methane

SDG:

Sustainable development goals

AMF:

Arbuscular mycorrhizal fungi

CEC:

Cation exchange capacity

DOC:

Dissolved organic carbon

SSA:

Specific surface area

OH:

Hydroxyl

N2O:

Nitrous oxide

References

  • Albaladejo J, Ortiz R, Garcia-Franco N, Navarro AR, Almagro M, Pintado JG, Martınez-Mena M (2013) Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. J Soils Sediments 13:265–277

    Article  CAS  Google Scholar 

  • Alekseeva TV (2011) Clay minerals and organo-mineral associates. In: Glinski J, Horabik J, Lipiec J (eds) Encyclopedia of agrophysics. Springer, Dordrecht, pp 117–121

    Chapter  Google Scholar 

  • Amato M, Ladd JN (1992) Decomposition of 14C-labelled glucose and legume material in soils: properties influencing the accumulation of organic residue C and microbial biomass C. Soil Biol Biochem 24:455–464

    Article  CAS  Google Scholar 

  • Annabi-Bergaya E, Cruiz MI, Gatineau L, Fripiat JJ (1979) Adsorption of alcohols by smectites: I. Distinction between internal and external surfaces. Clay Miner 14:249–258

    Article  CAS  Google Scholar 

  • Arnarson TS, Keil RG (2000) Mechanisms of pore water organic matter adsorption to montmorillonite. Mar Chem 71:309–320

    Article  CAS  Google Scholar 

  • Arndt S, Jørgensen BB, LaRowe DE, Middelburg JJ, Pancost RD, Regnier P (2013) Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci Rev 123:53–86

    Article  CAS  Google Scholar 

  • Baldock JA (2007) Composition and cycling of organic soil carbon in soil. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Baldock JA, Skjemstad J (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31:697–710

    Article  CAS  Google Scholar 

  • Balesdent J (1996) The significance of organic separates to carbon dynamics and its modelling in some cultivated soils. Eur J Soil Sci 47:485–493

    Article  CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Batjes NH, Sombroek WG (1997) Possibilities for carbon sequestration in tropical and subtropical soils. Glob Chang Biol 3:161–173

    Article  Google Scholar 

  • Baver LD (1963) The effect of organic matter on soil structure. Pontif Acad Sci Scr Varia 32:331–356

    Google Scholar 

  • Beare MH, McNeill SJ, Curtin D, Parfitt RL, Jones HS, Dodd MB, Sharp J (2014) Estimating the organic carbon stabilisation capacity and saturation deficit of soils: a New Zealand case study. Biogeochemistry 120(1-3):71–87

    Article  CAS  Google Scholar 

  • Benke MB, Mermut AR, Shariatmadari H (1999) Retention of dissolved organic carbon from vinasse by a tropical soil, kaolinite, and Fe-oxides. Geoderma 91:47–63

    Article  CAS  Google Scholar 

  • Besnard E, Chenu C, Balesdent J, Puget P, Arrouays D (1996) Fate of particulate organic matter in soil aggregates during cultivation. Eur J Soil Sci 47:495–503

    Article  CAS  Google Scholar 

  • Besse-Hoggan P, Alekseeva T, Sancelme M, Delort A-M, Forano C (2009) Atrazine biodegradation modulated by clays and clay/humic acid complexes. Environ Pollut 157:2837–2844

    Article  CAS  PubMed  Google Scholar 

  • Blair GJ, Lefroy RD, Lisle L (1995) Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res 46(7):1459–1466

    Article  Google Scholar 

  • Bolan NS, Naidu R, Syers JK, Tillman RW (1999) Surface charge and solute interactions in soils. Adv Agron 67:87–140

    Article  CAS  Google Scholar 

  • Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N (2011) Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv Agron 110:1–75

    Article  CAS  Google Scholar 

  • Bolan N, Kunhikrishnan A, Choppala G, Thangarajan R, Chung J (2012) Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility. Sci Total Environ 424:264–270

    Article  CAS  PubMed  Google Scholar 

  • Borchers JG, Perry DA (1992) The influence of soil texture and aggregation on carbon and nitrogen dynamics in southwest Oregon forests and clearcuts. Can J For Res 22:298–305

    Article  CAS  Google Scholar 

  • Borer P, Hug SJ (2014) Photo-redox reactions of dicarboxylates and α-hydroxydicarboxylates at the surface of Fe(III)(hydr)oxides followed with in situ ATR-FTIR spectroscopy. J Colloid Interface Sci 416:44–53

    Article  CAS  PubMed  Google Scholar 

  • Borer P, Hug SJ, Sulzberger B, Kraemer SM, Kretzschmar R (2009) ATR-FTIR spectroscopic study of the adsorption of desferrioxamine B and aerobactin to the surface of lepidocrocite (γ-FeOOH). Geochim Cosmochim Acta 73:4661–4672

    Article  CAS  Google Scholar 

  • Brown S (1996) Management of forests for mitigation of greenhouse gas emissions. In: Watson RT, Zinyowerea MC, Moss RH (eds) Climate change 1995. Impacts, adaptations and mitigation of climate change: scientific-technical analyses. Cambridge University Press, Cambridge, pp 775–797

    Google Scholar 

  • Bruun TB, Elberling B, Christensen BT (2010) Lability of soil organic carbon in tropical soils with different clay minerals. Soil Biol Biochem 42:888–895

    Article  CAS  Google Scholar 

  • Cagnasso M, Boero V, Franchini MA, Chorover J (2010) ATR-FTIR studies of phospholipid vesicle interactions with α-FeOOH and α-Fe2O3 surfaces. Colloids Surf B: Biointerfaces 76:456–467

    Article  CAS  PubMed  Google Scholar 

  • Cai P, He X, Xue A, Chen H, Huang Q, Yu J, Rong X, Liang W (2011) Bioavailability of methyl parathion adsorbed on clay minerals and iron oxide. J Hazard Mater 185:1032–1036

    Article  CAS  PubMed  Google Scholar 

  • Campbell C, Leyshon A, Zentner R, LaFond G, Janzen H (1991) Effect of cropping practices on the initial potential rate of N mineralization in a thin Black Chernozem. Can J Soil Sci 71:43–53

    Article  CAS  Google Scholar 

  • Campbell C, Myers R, Curtin D (1995) Managing nitrogen for sustainable crop production. Fertil Res 42:277–296

    Article  CAS  Google Scholar 

  • Canadell J, Kirschbaum M, Kurz WA, Sanz M-J, Schlamadinger B, Yamagata Y (2007) Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environ Sci Policy 10:370–384

    Article  Google Scholar 

  • Carter MR (2000) Organic matter and sustainability. In: Sustainable management of soil organic matter. CAB International, Oxford

    Google Scholar 

  • Chaudhary S, Dheri GS, Brar BS (2017) Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system. Soil Tillage Res 166:59–66

    Article  Google Scholar 

  • Chen C, Xu Z, Mathers N (2004) Soil carbon pools in adjacent natural and plantation forests of subtropical Australia. Soil Sci Soc Am J 68:282–291

    Article  CAS  Google Scholar 

  • Chen H, He X, Rong X, Chen W, Cai P, Liang W, Li S, Huang Q (2009) Adsorption and biodegradation of carbaryl on montmorillonite, kaolinite and goethite. Appl Clay Sci 46:102–108

    Article  CAS  Google Scholar 

  • Chenu C, Stotzky G (2002) Interactions between microorganisms and soil particles: an overview. In: Huang PM, Bollag JM, Senesi N (eds) Interactions between soil particles and microorganisms IUPAC series of applied geochemistry. Wiley, New York, pp 3–40

    Google Scholar 

  • Chernyshova IV, Ponnurangam S, Somasundaran P (2011) Adsorption of fatty acids on iron (hydr)oxides from aqueous solutions. Langmuir 27:10007–10018

    Article  CAS  PubMed  Google Scholar 

  • Chevallier T, Muchaonyerwa P, Chenu C (2003) Microbial utilisation of two proteins adsorbed to a vertisol clay fraction: toxin from Bacillus thuringiensis subsp. tenebrionis and bovine serum albumin. Soil Biol Biochem 35:1211–1218

    Article  CAS  Google Scholar 

  • Chivenge P, Murwira H, Giller K, Mapfumo P, Six J (2007) Long-term impact of reduced tillage and residue management on soil carbon stabilization: implications for conservation agriculture on contrasting soils. Soil Tillage Res 94:328–337

    Article  Google Scholar 

  • Christensen B (1996) Carbon in primary and secondary organomineral complexes. In: Carter MR, Stewart BA (eds) Structure and organic matter storage in agricultural soils. CRC Lewis Publishers, New York, pp 97–165

    Google Scholar 

  • Churchman GJ (2006) Soil phases: the inorganic solid phase. In: Certini G, Scalenghe R (eds) Soils: basic concepts and future challenges. Cambridge University Press, New York, pp 23–45

    Chapter  Google Scholar 

  • Churchman GJ, Lowe DJ (2012) Alteration, formation, and occurence of minerals in soils. In: Huang P, Li Y, Sumner ME (eds) Handbook of soil sciences: properties and processes, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Churchman G, Skjemstad J, Oades J (1993) Influence of clay minerals and organic matter on effects of sodicity on soils. Aust J Soil Res 31:779–800

    Article  CAS  Google Scholar 

  • Cole V (1996) Agricultural options for mitigation of greenhouse gas emissions. In: Watson RT, Zinyowerea MC, Moss RH (eds) Climate change (1995) impacts, adaptations and mitigation of climate change: scientific-technical analyses. Cambridge University Press, Cambridge, pp 747–771

    Google Scholar 

  • Collier SM, Ruark MD, Naber MR, Andraski TW, Casler MD (2017) Apparent stability and subtle change in surface and subsurface soil carbon and nitrogen under a long-term fertilizer gradient. Sci Soc Am J 81:310–321

    Article  CAS  Google Scholar 

  • Conant RT, Cerri CEP, Osborne BB, Paustian K (2017) Grassland management impacts on soil carbon stocks: a new synthesis. Ecol Appl 27:662–668

    Article  PubMed  Google Scholar 

  • Cong P, Ouyang Z, Hou R, Han D (2017) Effects of application of microbial fertilizer on aggregation and aggregate-associated carbon in saline soils. Soil Tillage Res 168:33–41

    Article  Google Scholar 

  • Curtin D, Beare MH, Hernandez-Ramirez G (2012) Temperature and moisture effects on microbial biomass and soil organic matter mineralization. Soil Sci Soc Am J 76:2055–2067

    Article  CAS  Google Scholar 

  • Davidson EA, Nepstad DC, Trumbmore SE (1993) Soil carbon dynamics in pastures and forests of the eastern Amazon. Bull Ecol Soc Am (US) 20:161–193

    CAS  Google Scholar 

  • De Lapparent DJ (1941) Logique des minkraux du granite. Rev Sci:285–292

    Google Scholar 

  • Derenne S, Largeau C (2001) A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments. Soil Sci 166:833–847

    Article  CAS  Google Scholar 

  • Devine S, Markewitz D, Hendrix P, Coleman D (2014) Soil aggregates and associated organic matter under conventional tillage, no-tillage, and forest succession after three decades. PLoS One 9:984–988

    Article  CAS  Google Scholar 

  • Dixon J (1991) Roles of clays in soils. Appl Clay Sci 5:489–503

    Article  CAS  Google Scholar 

  • Eberl DD (1984) Clay mineral formation and transformation in rocks and soils. Philos Trans R Soc Lond Ser A Math Phys Sci 311(1517):241–257

    CAS  Google Scholar 

  • Edmeades DC (2003) The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66:165–180

    Article  CAS  Google Scholar 

  • Edwards AP, Bremner JM (1967) Microaggregates in soils. Eur J Soil Sci 18:64–73

    Article  CAS  Google Scholar 

  • Edwards DP, Lim F, James RH, Pearce CR, Scholes J, Freckleton RP, Beerling DJ (2017) Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture. Biol Lett 13(4):20160715. https://doi.org/10.1098/rsbl.2016.0715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott E (1986) Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Sci Soc Am J 50:627–633

    Article  Google Scholar 

  • Elliott E, Coleman D (1988) Let the soil work for us. Ecol Bull 39:23–32

    Google Scholar 

  • Engel RE, Miller PR, McConkey BG, Wallander R (2017) Soil organic carbon changes to increasing cropping intensity and no-till in a semiarid climate. Soil Sci Soc Am J 81:404–413

    Article  CAS  Google Scholar 

  • Eusterhues K, Rumpel C, Kleber M, Kogel-Knabner I (2003) Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org Geochem 34:1591–1600

    Article  CAS  Google Scholar 

  • Favre F, Bogdal C, Gavillet S, Stucki JW (2006) Changes in the CEC of a soil smectite–kaolinite clay fraction as induced by structural iron reduction and iron coatings dissolution. Appl Clay Sci 34:95–104

    Article  CAS  Google Scholar 

  • Feller C, Beare MH (1997) Physical control of soil organic matter dynamics in the tropics. Geoderma 79:69–116

    Article  CAS  Google Scholar 

  • Feng X, Simpson A, Simpson MJ (2005) Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces. Org Geochem 36:1553–1566

    Article  CAS  Google Scholar 

  • Fenton TE, Brown JR, Mausbach MJ (1999) Effects of long term cropping on organic matter content of soils: implications for soil quality. In: Lal R (ed) Soil quality and soil erosion. CRC Press, Boca Raton, pp 95–124

    Google Scholar 

  • Fernandes ECM, Motavalli PP, Castilla C, Mukurumbira ZL (1997) Management control of soil organic matter dynamics in tropical land-use systems. Geoderma 79:49–67

    Article  CAS  Google Scholar 

  • Fisher MJ, Rao IM, Ayarza MA, Lascano CE, Sanz JI, Thomas RJ, Vera RR (1994) Carbon storage by introduced deeprooted grasses in the South American savannas. Nature 266:236–248

    Article  Google Scholar 

  • Follett R (2001) Soil management concepts and carbon sequestration in cropland soils. Soil Tillage Res 61:77–92

    Article  Google Scholar 

  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    Article  CAS  PubMed  Google Scholar 

  • Franzluebbers AJ (1999) Potential C and N mineralization and microbial biomass from intact and increasingly disturbed soils of varying texture. Soil Biol Biochem 31:1083–1090

    Article  CAS  Google Scholar 

  • Gillman GP (1980) The effect of crushed basalt scoria on the cation exchange properties of a highly weathered soil. Soil Sci Soc Am 44:465–468

    Article  CAS  Google Scholar 

  • Gillman GP, Burkett DC, Coventry RJ (2001) A laboratory study of application of basalt dust to highly weathered soils: effect on soil cation chemistry. Aust J Soil Res 39:799–811

    Article  CAS  Google Scholar 

  • Goh KM (2001) Managing organic matter in soils, sediments and water. Understanding and managing organic matter in soils, sediments and waters. In: Swift RS, Sparks KM (eds) Proceedings of the 9th International Conference on International Humic Substances Society Adelaide, Australia, pp 269–278

    Google Scholar 

  • Golchin A, Oades J, Skjemstad J, Clarke P (1994) Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy. Aust J Soil Res 32:285–309

    Article  CAS  Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94(12):2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435(7043):819–823

    Article  CAS  PubMed  Google Scholar 

  • Grandy AS, Wickings K (2010) Biological and biochemical pathways of litter decomposition and soil carbon stabilization. Geochim Cosmochim Acta 74(12):A351–A351

    Google Scholar 

  • Greenland DJ (1965) Interactions between clays and organic compounds in soils. Part I. Mechanisms of interaction between clays and defined organic compounds. Soils Fertil 28:415–532

    Google Scholar 

  • Greenland DJ (1997) Soil conditions and plant growth. Soil Use Manag 13:169–177

    Article  Google Scholar 

  • Gregorich E, Liang B, Ellert B, Drury C (1996) Fertilization effects on soil organic matter turnover and corn residue C storage. Sci Soc Am J 60:472–476

    Article  CAS  Google Scholar 

  • Greiner E, Kumar K, Sumit M, Giuffre A, Zhao W, Pedersen J, Sahai N (2014) Adsorption of L-glutamic acid and L-aspartic acid to γ-Al2O3. Geochim Cosmochim Acta 133:142–155

    Article  CAS  Google Scholar 

  • Grim RE, Asllaway WH, Cuthbert FL (1947) Reaction of different clay minerals with some organic cations. J Am Ceram Soc 30(5):137–142

    Article  CAS  Google Scholar 

  • Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF (1994) Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Technol 28:38–46

    Article  CAS  PubMed  Google Scholar 

  • Guggenheim S, Martin RT (1995) Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. Clay Clay Miner 43(2):255–256

    Article  CAS  Google Scholar 

  • Gupta V, Germida J (1988) Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biol Biochem 20:777–786

    Article  CAS  Google Scholar 

  • Haider K (1992) Problems related to the humification processes in soils of temperate climates. In: Stotzky G, Bollag J-M (eds) Soil biochemistry, vol 7. Marcel Dekker, New York, pp 55–94

    Google Scholar 

  • Hartmann J, West AJ, Renforth P, Kohler P, De La Rocha CL, Wolf-Gladrow DA, Durr HH, Scheffran J (2013) Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev Geophys 51:113–149

    Article  Google Scholar 

  • Hassink J (1992) Effects of soil texture and structure on carbon and nitrogen mineralization in grassland soils. Biol Fertil Soils 14:126–134

    Article  CAS  Google Scholar 

  • Hassink J (1995) Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N mineralization. Soil Biol Biochem 27:1099–1108

    Article  CAS  Google Scholar 

  • Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191:77–87

    Article  CAS  Google Scholar 

  • Hassink J, Chenu C, Dalenberg JW, Bolem J, Bouwman LA (1994) Interactions between soil biota, soil organic matter and soil structure. In: 15th World Congress of soil science, vol 49. Acapulco, Mexico, pp 57–58

    Google Scholar 

  • Hattori T (1988) Soil aggregates as microhabitats of microorganisms. Rep Inst Agric Res Tohoku Univ 37:23–36

    Google Scholar 

  • Hendricks SB (1941) Base exchange of the clay mineral montmorillonite for organic cations and its dependence upon adsorption due to van der Waals Forces. J Phys Chem 45(1):65–81

    Article  CAS  Google Scholar 

  • Huang PM (2004) Soil mineral–organic matter-microorganism interactions: fundamentals and impacts. Adv Agron 82:391–472

    Article  CAS  Google Scholar 

  • Huang PM, Wang MK, Kampf N, Schulze DG (2002) Aluminum hydroxides. In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications. Soil Science Society of America, Madison, pp 261–289

    Google Scholar 

  • IPCC (2001) The Third Governmental Panel on Climate Change Assessment Report. Climate Change (2001): impacts, adaptations and vulnerability. Report of Working Group II. Available at http://www.usgcrp.gov/ipcc/default.html

  • IPCC (2007) Summary of policymakers, climate change (2007): synthesis report. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Izac AMN (1997) Developing policies for soil carbon management in tropical regions. Geoderma 79:261–276

    Article  CAS  Google Scholar 

  • Jastrow JD (1996) Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol Biochem 28:656–676

    Article  Google Scholar 

  • Jenkinson DS, Rayners JH (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci 123(5):298–305

    Article  CAS  Google Scholar 

  • Johnson J-F, Allmaras R, Reicosky D (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J 98:622–636

    Article  CAS  Google Scholar 

  • Jones D, Edwards A (1998) Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol Biochem 30:1895–1902

    Article  CAS  Google Scholar 

  • Jong E, Kachanoski RG (1988) The importance of erosion in the carbon balance of prairie soils. Can J Soil Sci 68:111–119

    Article  Google Scholar 

  • Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31:711–725

    Article  CAS  Google Scholar 

  • Kaiser K, Guggenberger G (2003) Mineral surfaces and soil organic matter. Eur J Soil Sci 54:219–236

    Article  CAS  Google Scholar 

  • Kaiser K, Zech W (2000) Sorption of dissolved organic nitrogen by acid subsoil horizons and individual mineral phases. Eur J Soil Sci 51:403–411

    Article  CAS  Google Scholar 

  • Kalbitz K, Schmerwitz J, Schwesig D, Matzner E (2003a) Biodegradation of soil derived dissolved organic matter as related to its properties. Geoderma 113:273–291

    Article  CAS  Google Scholar 

  • Kalbitz K, Schwesig D, Schmerwitz J, Kaiser K, Haumaier L, Glaser B, Ellerbrock R, Leinweber P (2003b) Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biol Biochem 35:1129–1142

    Article  CAS  Google Scholar 

  • Kalbitz K, Schwesig D, Rethemeyer J, Matzner E (2005) Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol Biochem 37:1319–1331

    Article  CAS  Google Scholar 

  • Kampf N, Scheinost AC, Schulze DG (2012) Oxide minerals in soils. In: Huang PM, Yuncong L, Summer ME (eds) Handbook of soil sciences: properties and processes. CRC Press, Boca Raton

    Google Scholar 

  • Kane D (2015) Carbon sequestration potential on agricultural lands: a review of current science and available practices. National Sustainable Agriculture Coalition. Solutions, L.L.C, Washington DC

    Google Scholar 

  • Kantola IB, Masters MD, Beerling DJ, Long SP, DeLucia EH (2017) Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biol Lett 13:20160714. https://doi.org/10.1098/rsbl.2016.0714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr PF (1952) Formation and occurrence of clay minerals. Clay Clay Miner 1(1):19–32

    Article  Google Scholar 

  • Kiem R, Kogel-Knabner I (2003) Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biol Biochem 35:101–118

    Article  CAS  Google Scholar 

  • Kirk TK (1984) Degradation of lignin. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 399–435

    Google Scholar 

  • Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85:9–24

    Article  Google Scholar 

  • Koga N, Hayashi K, Shimoda S (2016) Differences in CO2 and N2O emission rates following crop residue incorporation with or without field burning: a case study of adzuki bean residue and wheat straw. Soil Sci Plant Nutr 62:52–56

    Article  CAS  Google Scholar 

  • Kohler P, Hartmann J, Wolf-Gladrow DA (2010) Geoengineering potential of artificially enhanced silicate weathering of olivine. Proc Natl Acad Sci U S A 107:20228–20233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kossovskaya AG, Shutov VD (1963) Facies of regional epi- and metagenesis. Izv Akad Nauk SSSR Serv Geol 28(7): 3–18; translated in International Geol Res U.S.A. 7:1157–1167

    Google Scholar 

  • Ladd JN, Amato M, Oades JM (1985) Decomposition of plant material in Australian soils. III. Residual organic and microbial biomass C and N from isotope-labeled legume material and soil organic matter, decomposing under field conditions. Aust J Soil Res 23:603–611

    Article  CAS  Google Scholar 

  • Ladd JN, Jocteur-Monrozier L, Amato M (1992) Carbon turnover and nitrogen transformations in an alfisol and vertisol amended with [U-14C] glucose and [15N] ammonium sulfate. Soil Biol Biochem 24:359–371

    Article  CAS  Google Scholar 

  • Lagaly G, Ogawa M, Dekany I (2013) Clay mineral–organic interactions. In: Bergaya F, Lagaly G (eds) Developments in clay science, vol 5. Elsevier, Amsterdam, pp 435–505

    Google Scholar 

  • Lal R (2002a) Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems. Land Degrad Dev 13:469–478

    Article  Google Scholar 

  • Lal R (2002b) Soil carbon dynamics in cropland and rangeland. Environ Pollut 116:353–362

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2003) Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit Rev Plant Sci 22:151–184

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2007) Carbon management in agricultural soils. Mitig Adapt Strateg Glob Chang 12:303–322

    Article  Google Scholar 

  • Lal R, Kimble J, Levine E, Whitman C (1995) Towards improving the global database on soil carbon. In: Lal R, Kimble J, Levine E, Stewart BA (eds) Soils and global change. Lewis, Boca Raton, pp 343–436

    Google Scholar 

  • Lamparter A, Bachmann J, Goebel M-O, Woche S (2009) Carbon mineralization in soil: impact of wetting–drying, aggregation and water repellency. Geoderma 150:324–333

    Article  CAS  Google Scholar 

  • Leinweber P, Schulten HR (1995) Composition, stability and turnover of soil organic matter: investigations by off-line pyrolysis and direct pyrolysis-mass spectrometry. J Anal Appl Pyrolysis 32:91–110

    Article  CAS  Google Scholar 

  • Li Q, Yu P, Li G, Zhou D (2016) Grass–legume ratio can change soil carbon and nitrogen storage in a temperate steppe grassland. Soil Tillage Res 157:23–31

    Article  Google Scholar 

  • Lopez-Bellido RJ, Munoz-Romero V, Fuentes-Guerra R, Fernandez-Garcia P, Lopez-Bellido L (2017) No-till: a key tool for sequestering C and N in microaggregates on a Mediterranean Vertisol. Soil Tillage Res 166:131–137

    Article  Google Scholar 

  • Lozzi I, Calamai L, Fusi P, Bosetto M, Stotzky G (2001) Interaction of horseradish peroxidase with montmorillonite homoionic to Na+ and Ca2+: effects on enzymatic activity and microbial degradation. Soil Biol Biochem 33:1021–1028

    Article  CAS  Google Scholar 

  • Ludwig B, John B, Ellerbrock R, Kaiser M, Flessa H (2003) Stabilization of carbon from maize in a sandy soil in a long-term experiment. Eur J Soil Sci 54:117–126

    Article  CAS  Google Scholar 

  • Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition: what do we know? Biol Fertil Soils 46:1–15

    Article  Google Scholar 

  • Manning DAC, Renforth P (2013) Passive sequestration of atmospheric CO2 through coupled plant-mineral reactions in urban soils. Environ Sci Technol 47:135–141

    Article  CAS  PubMed  Google Scholar 

  • Martin J, Haider K, Kassim G (1980) Biodegradation and stabilization after 2 years of specific organic matter in Mozambiquan soils. Soil Sci Soc Am J 68:154–161

    Google Scholar 

  • Meena RS, Lal R (2018) Legumes for soil health and sustainable management. Springer Singapore, Singapore, p 541. ISBN 978-981-13-0253-4 (eBook), ISBN: 978-981-13-0252-7(Hardcover). https://doi.org/10.1007/978-981-13-0253-4_10

    Book  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interactionof Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in thesoybean rhizosphere: a review. Plant Growth Regul 84:207–223. https://doi.org/10.1007/s10725-017-0334-8

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijaykumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020) Impact of agrochemicals on soil microbiota and management: a review. Land (MDPI) 9(2):34. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020a) Long term impacts of topsoil depthand amendments on soil physical and hydrological properties of anAlfisol in Central Ohio, USA. Geoderma 363:1141164. https://doi.org/10.1016/j.geoderma.2019.114164

    Article  CAS  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 2020194:104752. https://doi.org/10.1016/j.catena.2020.104752

    Article  CAS  Google Scholar 

  • Merckx R, Den Hartog A, van Veen JA (1985) Turnover of root derived material and related microbial biomass formation in soils of different texture. Soil Biol Biochem 17:565–569

    Article  Google Scholar 

  • Mikutta R, Kleber M, Jahn R (2005) Poorly crystalline minerals protect organic carbon in clay subfractions from acid subsoil horizons. Geoderma 128:106–115

    Article  CAS  Google Scholar 

  • Mikutta R, Mikutta C, Kalbitz K, Scheel T, Kaiser K, Jahn R (2007) Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochim Cosmochim Acta 71:2569–2590

    Article  CAS  Google Scholar 

  • Miyashiro A (2012) Metamorphism and metamorphic belts. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem 59:72–85

    Article  CAS  Google Scholar 

  • Muffler LJP, White DE (1969) Active metamorphism of Upper Cenozoic sediments in the Salton Sea-geothermal field and the Salton trough, southeastern California. Bull Geol Soc Am 80:157–182

    Article  CAS  Google Scholar 

  • Muller G (1967) Diagenesis in argillaceous sediments. In: Larsen G, Chilingar GV (eds) Diagenesis in sediments-developments in sedimentology, vol 8. Elsevier, Amsterdam, pp 127–177

    Chapter  Google Scholar 

  • Nepstad DC, Uhl C, Serrao EAS (1991) Recuperation of a degraded Amazonian landscape: forest recovery and agricultural restoration. Ambio 20:248–255

    Google Scholar 

  • Neue HU (1997) Fluxes of methane from rice fields and potential for mitigation. Soil Use Manag 13:258–267

    Article  Google Scholar 

  • Nishina K, Ito A, Beerling DJ, Cadule P, Ciais P, Clark DB, Falloon P, Friend AD, Kahana R, Kato E, Keribin R, Lucht W, Lomas M, Rademacher TT, Pavlick R, Schaphoff S, Vuichard N, Warszawaski L, Yokohata T (2014) Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation. Earth Syst Dynam 5:197–209

    Article  Google Scholar 

  • Novelli LE, Caviglia OP, Pineiro G (2017) Increased cropping intensity improves crop residue inputs to the soil and aggregate-associated soil organic carbon stocks. Soil Tillage Res 165:128–136

    Article  Google Scholar 

  • O’Loughlin EJ, Traina SJ, Sims GK (2000) Effects of sorption on the biodegradation of 2-methylpyridine in aqueous suspensions of reference clay minerals. Environ Toxicol Chem 19:2168–2174

    Article  Google Scholar 

  • Oades JM (1989) An introduction to organic matter in mineral soils. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 89–159

    Google Scholar 

  • Omoike A, Chorover J (2004) Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: aqueous chemistry and adsorption effects. Biomacromolecules 5:1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Omoike A, Chorover J, Kwon KD, Kubicki JD (2004) Adhesion of bacterial exopolymers to alpha-FeOOH: inner-sphere complexation of phosphodiester groups. Langmuir 20:11108–11114

    Article  CAS  PubMed  Google Scholar 

  • Pal DK, Sarma VAK, Datta SC (2009) Chemical composition of soils. In: Goswami NN, Rattan RK, Dev G, Narayanasamy G, Das DK, Sanyal SK, Pal DK, Rao DLN (eds) Fundamental of soil science. Indian Society of Soil Science, New Delhi, pp 243–268

    Google Scholar 

  • Papendick RI (1994) Maintaining soil physical conditions. In: Greenland DJ, Szabolcs I (eds) Soil resilience and sustainable land-use. CAB, Wallingford, pp 215–234

    Google Scholar 

  • Parfitt RL (2009) Allophane and imogolite: role in soil biogeochemical processes. Clay Miner 44:135–155

    Article  CAS  Google Scholar 

  • Paustian K, Andrén O, Janzen HH, Lal R, Smith P, Tian G, Tiessen H, Van Noordwijk M, Woomer PL (1997) Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag 13:230–244

    Article  Google Scholar 

  • Paustian K, Six J, Elliott E, Hunt H (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48:147–163

    Article  CAS  Google Scholar 

  • Pennock D, McKenzie N, Montanarella L (2015) Status of the world’s soil resources. FAO, Rome

    Google Scholar 

  • Prakash A, MacGregor DJ (1983) Environmental and human health significance of humic materials: an overview. In: Christman RF, Gjessing ET (eds) Aquatic and terrestrial humic materials. Ann Arbor Science, Ann Arbor, pp 481–494

    Google Scholar 

  • Pulleman M, Marinissen J (2004) Physical protection of mineralizable C in aggregates from long-term pasture and arable soil. Geoderma 120:273–282

    Article  CAS  Google Scholar 

  • Purakayastha TJ, Huggins DR, Smith JL (2008a) Carbon sequestration in native prairie, perennial grass, no-till, and cultivated Palouse silt loam. Sci Soc Am J 72:534–540

    Article  CAS  Google Scholar 

  • Purakayastha TJ, Rudrappa L, Singh D, Swarup A, Bhadraray S (2008b) Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat– cowpea cropping system. Geoderma 144:370–378

    Article  CAS  Google Scholar 

  • Quideau SA, Chadwick OA, Trumbore SE, Johnson-Maynard JL, Graham RC, Anderson MA (2001) Vegetation control on soil organic matter dynamics. Org Geochem 32:247–252

    Article  CAS  Google Scholar 

  • Quiquampoix H, Abadie J, Baron M, Leprince F, Matumoto-Pintro P, Ratcliffe R, Staunton S (1995) Mechanisms and consequences of protein adsorption on soil mineral surfaces, ACS Symposium series 602. American Chemical Society, Washington, DC, pp 321–333

    Google Scholar 

  • Quirk J, Andrews MY, Leake JR, Banwart SA, Beerling DJ (2014) Ectomycorrhizal fungi and past high CO2 atmospheres enhance mineral weathering through increased below-ground carbon-energy fluxes. Biol Lett 10. https://doi.org/10.1098/rsbl.2014.0375

  • Reicosky D, Kemper W, Langdale G, Douglas C, Rasmussen P (1995) Soil organic matter changes resulting from tillage and biomass production. J Soil Water Conserv 50:253–261

    Google Scholar 

  • Renforth P, Pogge von Strandmann PAE, Henderson GM (2015) The dissolution of olivine added to soil: implications for enhanced weathering. Appl Geochem 61:109–118

    Article  CAS  Google Scholar 

  • Rhoton FE, Tyler DD (1990) Erosion-induced changes in the properties of a fragipan soil. Soil Sci Soc Am J 54:223–228

    Article  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84(4):355–363

    Article  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233(2):167–177

    Article  CAS  Google Scholar 

  • Rudrappa L, Purakayastha TJ, Singh D, Bhadraray S (2006) Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid subtropical India. Soil Tillage Res 88:180–192

    Article  Google Scholar 

  • Rumpel C, Kogel-Knabner I, Bruhn F (2002) Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org Geochem 33:1131–1142

    Article  CAS  Google Scholar 

  • Rumpel C, Eusterhues K, Kogel-Knabner I (2004) Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils. Soil Biol Biochem 36:177–190

    Article  CAS  Google Scholar 

  • Saggar S, Parshotam A, Sparling G, Feltham C, Hart P (1996) 14C-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy. Soil Biol Biochem 28:1677–1686

    Article  CAS  Google Scholar 

  • Saidy A, Smernik R, Baldock J, Kaiser K, Sanderman J, Macdonald L (2012) Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma 173:104–110

    Article  CAS  Google Scholar 

  • Saidy A, Smernik R, Baldock J, Kaiser K, Sanderman J (2013) The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide. Geoderma 209:15–21

    Article  CAS  Google Scholar 

  • Sampson RN, Apps M, Brown S et al (1993) Workshop summary statement: terrestrial biospheric carbon fluxes: quantification of sinks and sources of CO2. In: Wisniewski J, Sampson RN (eds) Terrestrial biospheric carbon fluxes quantification of sinks and sources of CO2. Springer, Dordrecht

    Google Scholar 

  • Sanderman J, Farquharson R, Baldock JA (2010) Soil carbon sequestration potential: a review for Australian agriculture. CSIRO Land and Water, Urrbrae

    Google Scholar 

  • Sarkar B, Megharaj M, Xi Y, Naidu R (2011) Structural characterisation of Arquad® 2HT-75 organobentonites: surface charge characteristics and environmental application. J Hazard Mater 195:155–161

    Article  CAS  PubMed  Google Scholar 

  • Sarkar B, Megharaj M, Xi Y, Naidu R (2012) Surface charge characteristics of organopalygorskites and adsorption of p-nitrophenol in flow-through reactor system. Chem Eng J 185–186:35–43

    Article  CAS  Google Scholar 

  • Sarkar B, Megharaj M, Shanmuganathan D, Naidu R (2013) Toxicity of organoclays to microbial processes and earthworm survival in soils. J Hazard Mater 261:793–800

    Article  CAS  PubMed  Google Scholar 

  • Scharpenseel HW, Beckerheidmann P (1989) Shifts in 14C patterns of soil profiles due to bomb carbon, including effects of morphogenetic and turbation processes. Radiocarbon 31:627–636

    Article  Google Scholar 

  • Schnitzer M, Khan SU (eds) (1975) Soil organic matter 8, vol 304. Elsevier Science, Burlington, pp 1623–1627

    Google Scholar 

  • Shahid M, Nayak AK, Puree C, Tripathi R, Lal B, Gautam P, Bhattacharyya P, Mohanty S, Kumar A, Panda BB, Kumar U, Shukla AK (2017) Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil. Soil Tillage Res 170:136–146

    Article  Google Scholar 

  • Shen Y-H (1999) Sorption of natural dissolved organic matter on soil. Chemosphere 38:1505–1515

    Article  CAS  Google Scholar 

  • Singh M, Sarkar B, Biswas B, Churchman J, Bolan NS (2016) Adsorption-desorption behavior of dissolved organic carbon by soil clay fractions of varying mineralogy. Geoderma 280:47–56

    Article  CAS  Google Scholar 

  • Singh M, Sarkar B, Hussain S, Ok YS, Bolan NS, Churchman GJ (2017a) Influence of physico-chemical properties of soil clay fractions on the retention of dissolved organic carbon. Environ Geochem Health 39:1335–1350

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Sarkar B, Biswas B, Bolan NS, Churchman GJ (2017b) Relationship between soil clay mineralogy and carbon protection capacity as influenced by temperature and moisture. Soil Biol Biochem 109:95–106

    Article  CAS  Google Scholar 

  • Singh M, Sarkar B, Sarkar S, Churchman J, Bolan N, Mandal S, Menon M, Purakayastha TJ, Beerling DJ (2018) Stabilization of soil organic carbon as influenced by clay mineralogy. Adv Agron 148:33–84

    Article  Google Scholar 

  • Sissoko A, Kpomblekou-A K (2010) Carbon decomposition in broiler litter-amended soils. Soil Biol Biochem 42:543–550

    Article  CAS  Google Scholar 

  • Six J, Elliott E, Paustian K (2000a) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Six J, Paustian K, Elliott ET, Combrink C (2000b) Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci Soc Am J 64:681–689

    Article  CAS  Google Scholar 

  • Six J, Merckx R, Kimpe K, Paustian K, Elliott ET (2000c) A re-evaluation of the enriched labile soil organic matter fraction. Eur J Soil Sci 51(2):283–293

    Article  Google Scholar 

  • Six J, Conant R, Paul E, Paustian K (2002) Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241(2):155–176

    Article  CAS  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70(2):555–569

    Article  CAS  Google Scholar 

  • Sjogersten S, Wookey PA (2009) The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone. Ambio 38:2–10

    Article  CAS  PubMed  Google Scholar 

  • Skiba M, Szczerba M, Skiba S, Bish DL, Grybos M (2011) The nature of interlayering in clays from a podzol (Spodosol) from the Tatra Mountains, Poland. Geoderma 160:425–433

    Article  CAS  Google Scholar 

  • Skjemstad JO, Clarke P, Taylor J, Oades JM, McClure SG (1996) The chemistry and nature of protected carbon in soil. Aust J Soil Res 34:251–271

    Article  CAS  Google Scholar 

  • Skjemstad J, Spouncer L, Cowie B, Swift R (2004) Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools. Soil Res 42:79–88

    Article  CAS  Google Scholar 

  • Smith S, Ainsworth C, Traina S, Hicks R (1992) Effect of sorption on the biodegradation of quinoline. Soil Sci Soc Am J 56:737–746

    Article  CAS  Google Scholar 

  • Smith KA, McTaggart IP, Tsuruta H (1997a) Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use Manag 13:296–304

    Article  Google Scholar 

  • Smith P, Powlson DS, Gledining MJ, Smith JU (1997b) Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Glob Chang Biol 3:67–79

    Article  Google Scholar 

  • Sommerfeldt T, Chang C, Entz T (1988) Long-term annual manure applications increase soil organic matter and nitrogen, and decrease carbon to nitrogen ratio. Sci Soc Am J 52:1668–1672

    Article  Google Scholar 

  • Sorensen LH (1972) Stabilization of newly formed amino acid metabolites in soil by clay minerals. Soil Sci 114:5–11

    Article  Google Scholar 

  • Sposito G, Skipper NT, Sutton R, Park S-h, Soper AK, Greathouse JA (1999) Surface geochemistry of the clay minerals. Proc Natl Acad Sci USA 96:3358–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern N (2007) The economics of climate change: the Stern review. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stevenson FJ (1982) Humus chemistry. Genesis, composition, reactions. Wiley, New York

    Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, New York

    Google Scholar 

  • Stewart CE, Paustian K, Conant RT, Plante AF, Six J (2007) Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry 86(1):19–31

    Article  CAS  Google Scholar 

  • Stotzky G (1986) Influence of soil mineral colloids and metabolic processes, growth adhesion, and ecology of microbes and viruses. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes, Special publication 17. Soil Science Society of America, Madison, pp 305–428

    Google Scholar 

  • Sun J, Peng H, Chen J, Wang X, Wei M, Li W, Yang L, Zhang Q, Wang W, Mellouki A (2016) An estimation of CO2 emission via agricultural crop residue open field burning in China from 1996 to 2013. J Clean Prod 112(Part 4):2625–2631

    Article  CAS  Google Scholar 

  • Sutton R, Sposito G (2006) Molecular simulation of humic substance–Ca-montmorillonite complexes. Geochim Cosmochim Acta 70:3566–3581

    Article  CAS  Google Scholar 

  • Talibudeen O (1950) Interlamellar adsorption of protein monolayers on pure montmorillonoid clays. Nature 166(4214):236–236

    Article  CAS  PubMed  Google Scholar 

  • Tan KH (1982) Principles of soil chemistry. Marcel Dekker, Inc, New York and Basel

    Google Scholar 

  • Tan W, Wang G, Huang C, Gao R, Xi B, Zhu B (2017) Physico-chemical protection, rather than biochemical composition, governs the responses of soil organic carbon decomposition to nitrogen addition in a temperate agroecosystem. Sci Total Environ 598:282–288

    Article  CAS  PubMed  Google Scholar 

  • Taylor LL, Quirk J, Thorley RMS, Kharecha PA, Hansen J, Ridgwell A, Lomas MR, Banwart SA, Beerling DJ (2016) Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat Clim Chang 6:402–406

    Article  CAS  Google Scholar 

  • Theng BKG, Churchman GJ, Newman RH (1986) The occurrence of interlayer clay-organic complexes in two New Zealand soils. Soil Sci 142:262–266

    Article  CAS  Google Scholar 

  • Tisdall J, Oades J (1982) Organic matter and water-stable aggregates in soils. Eur J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Torbert HA, Rogers HH, Prior SA, Schlesinger WH, Runions GB (1997) Effects of elevated atmospheric CO2 in agro-ecosystems on soil carbon storage. Glob Chang Biol 3:513–521

    Article  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173

    Article  CAS  Google Scholar 

  • U.S. Department of Energy (2008) Carbon cycling and biosequestration: integrating biology and climate through systems science, Report from the March 2008 Workshop, DOE/SC-108. U.S. Department of Energy Office of Science, Washington, DC

    Google Scholar 

  • Utada M (1980) Hydrothermal alteration related to igneous acidity in Cretaceous and Neogene formations of Japan. Min Geol Jpn Spec Issue 12:67–83

    Google Scholar 

  • Vermeer AWP, Koopal LK (1998) Adsorption of humic acids to mineral particles. 2. Polydispersity effects with polyelectrolyte adsorption. Langmuir 14:4210–4216

    Article  CAS  Google Scholar 

  • Vermeer AWP, van Riemsdijk WH, Koopal LK (1998) Adsorption of humic acid to mineral particles. 1. Specific and electrostatic interactions. Langmuir 14:2810–2819

    Article  CAS  Google Scholar 

  • von Lutzow M, Kogel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445

    Article  CAS  Google Scholar 

  • von Lutzow M, Kogel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207

    Article  CAS  Google Scholar 

  • Wang X-C, Lee C (1993) Adsorption and desorption of aliphatic amines, amino acids and acetate by clay minerals and marine sediments. Mar Chem 44:1–23

    Article  CAS  Google Scholar 

  • Wang WJ, Dalal RC, Moody PW, Smith CJ (2003) Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol Biochem 35(2):273–284

    Article  CAS  Google Scholar 

  • Watson RT, Zinyowerea MC, Moss RH (eds) (1996) Climate change (1995) impacts, adaptations and mitigation of climate change: scientific-technical analyses. Contribution of working group II to the second assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Wattel-Koekkoek EJ, Buurman P (2004) Mean residence time of kaolinite and smectite-bound organic matter in Mozambiquan soils. Soil Sci Soc Am J 68(1):154–161

    Google Scholar 

  • Wattel-Koekkoek EJW, van Genuchten PPL, Buurman P, van Lagen B (2001) Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils. Geoderma 99:27–49

    Article  CAS  Google Scholar 

  • Wattel-Koekkoek E, Buurman P, Van Der Plicht J, Wattel E, Van Breemen N (2003) Mean residence time of soil organic matter associated with kaolinite and smectite. Eur J Soil Sci 54:269–278

    Article  Google Scholar 

  • Whalen JK, Sampedro L (2009) Primary production. In: Whalen JK, Sampedro L (eds) Soil ecology and management. CAB International, Wallingford, pp 109–133

    Chapter  Google Scholar 

  • Whitehouse UG, Mccarter RS (1958) Diagenetic modification of clay-mineral types inartificial sea-water. Proceedings of the National Conference on clays Clay Minerals, 5th, 1956-Natl Acad Sci Natl Res Council Publ 566, pp 81–119

    Google Scholar 

  • Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12(5):452–461

    Article  PubMed  Google Scholar 

  • Wynn JG, Bird MI, Vellen L, Grand-Clement E, Carter J, Berry SL (2006) Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. Glob Biogeochem Cycles 20(1–12):GB1007. https://doi.org/10.1029/2005GB002576

    Article  CAS  Google Scholar 

  • Yadav RK, Purakayastha TJ, Khan MA, Kaushik SC (2017) Long-term impact of manuring and fertilization on enrichment, stability and quality of organic carbon in Inceptisol under two potato-based cropping systems. Sci Total Environ 609:1535–1543

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Wang J, Pan W, Regier T, Hu Y, Rumpel C, Bolan N, Sparks D (2016) Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L3,2-edge XANES spectroscopy. Sci Rep 6:26127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Liu N, Zhang Y (2017a) Effects of aggregates size and glucose addition on soil organic carbon mineralization and Q10 values under wide temperature change conditions. Eur J Soil Bio 80:77–84

    Article  CAS  Google Scholar 

  • Yang J, Liu J, Hu Y, Rumpel C, Bolan N, Sparks D (2017b) Molecular-level understanding of malic acid retention mechanisms in ternary kaolinite-Fe(III)-malic acid systems: the importance of Fe speciation. Chem Geol 464:69–75

    Article  CAS  Google Scholar 

  • Yoder HS, Eugster HP (1954) Syntheses and stability of the muscovites. Am Mineral 39:350–351

    Google Scholar 

  • Yu H, Ding W, Chen Z, Zhang H, Luo J, Bolan N (2015) Accumulation of organic C components in soil and aggregates. Sci Rep 5:13804

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu G, Xiao J, Hu S, Polizzotto ML, Zhao F, McGrath SP, Li H, Ran W, Shen Q (2017) Mineral availability as a key regulator of soil carbon storage. Environ Sci Technol 51:4960–4969

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xin X, Zhu A, Zhang J, Yang W (2017) Effects of tillage and residue managements on organic C accumulation and soil aggregation in a sandy loam soil of the North China Plain. Catena 156:176–183

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, S. (2021). Clay Mineralogy: Soil Carbon Stabilization and Organic Matter Interaction. In: Datta, R., Meena, R.S. (eds) Soil Carbon Stabilization to Mitigate Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-33-6765-4_3

Download citation

Publish with us

Policies and ethics