Skip to main content
Log in

The anaerobic oxidation of methane driven by multiple electron acceptors suppresses the release of methane from the sediments of a reservoir

  • Sediments, Sec 2 • Physical and Biogeochemical Processes • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Methane, produced and emitted when organic carbon accumulates in reservoir sediments, can be oxidised microbially before being released into the overlying water by a variety of electron acceptors. This research aimed to investigate the microbial drivers responsible for the specific pattern of methane production and oxidation, as well as the role of electron acceptors in regulating anaerobic oxidation of methane (AOM) along the sediment core of a freshwater reservoir.

Materials and methods

A sediment core was obtained from the Hongfeng Reservoir, a eutrophic lake-type reservoir located in Guizhou Province, China. To estimate methane production/oxidation profiles, the core was stratified and the porewater properties of each sediment layer (organic matter, carbon isotopic compositions, and etc.) were analysed and integrated with microbial communities and the methane production activity.

Results

Methanogens were detected throughout the sediment depth profile. Hydrogenotrophic Methanomicrobiales were identified as the primary producer of methane in the surface layer (<20 cm), whereas Methanobacteriales and aceticlastic Methanosarcinales were revealed as the primary producers in the deeper layer. Additionally, methane was oxidised along the sediment profile with various electron acceptors. The coexistence of sulfate- and iron-oxidising bacteria at the surface layer demonstrated the possibility of sulfate and iron-dependent methane oxidation. Both the potential activity of AOM and the nitrite peak indicated the presence of an active nitrite-AOM zone consisted in the intermediate layer (14–24 cm) underneath the sulfate-AOM zone.

Conclusion

Methane production and oxidation co-exist along the sediment core of a freshwater reservoir. Notably, AOMs have a significant potential to reduce in situ methane emissions from freshwater sediment environments. Additionally, there are multiple electrons available for the microbial AOM, and correspondingly, the functional microorganisms participating in AOMs are distributed across the sediment habitat in a niche-specific manner.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, del Giorgio P, Roland F (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4:593–596

    Article  CAS  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cy 18:1–12

    Article  Google Scholar 

  • Bastviken D, Cole JJ, Pace ML, Van de Bogert MC (2008) Fates of methane from different lake habitats: connecting whole-lake budgets and ch4emissions. J Geophys Res: Biogeosci 113:1–13

    Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  CAS  Google Scholar 

  • Bhattarai S, Cassarini C, Lens PNL (2019) Physiology and distribution of archaeal methanotrophs that couple anaerobic oxidation of methane with sulfate reduction. Microbiol Mol Biol R 83:1–31

    Article  Google Scholar 

  • Bodelier PL, Meima-Franke M, Hordijk CA, Steenbergh AK, Hefting MM, Bodrossy L, von Bergen M, Seifert J (2013) Microbial minorities modulate methane consumption through niche partitioning. ISME J 7:2214–2228

    Article  CAS  Google Scholar 

  • Cai C, Leu AO, Xie GJ, Guo J, Feng Y, Zhao JX, Tyson GW, Yuan Z, Hu S (2018) A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J 12:1929–1939

    Article  CAS  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina Hiseq and Miseq platforms. ISME J 6:1621–1624

    Article  CAS  Google Scholar 

  • Chen H, Wang Z, Liu H, Nie Y, Zhu Y, Jia Q, Ding G, Ye J (2021) Variable sediment methane production in response to different source-associated sewer sediment types and hydrological patterns: Role of the sediment microbiome. Water Res 190:116670

    Article  CAS  Google Scholar 

  • Crowe SA, Katsev S, Leslie K, Sturm A, Magen C, Nomosatryo S, Pack MA, Kessler JD, Reeburgh WS, Roberts JA, Gonzalez L, Douglas Haffner G, Mucci A, Sundby B, Fowle DA (2011) The methane cycle in ferruginous lake matano. Geobiol 9:61–78

    Article  CAS  Google Scholar 

  • Deemer BR, Harrison JA, Li S, Beaulieu JJ, DelSontro T, Barros N, Bezerra-Neto JF, Powers SM, Dos Santos MA, Vonk JA (2016) Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience 66:949–964

    Article  Google Scholar 

  • Deutzmann JS, Schink B (2011) Anaerobic oxidation of methane in sediments of lake constance, an oligotrophic freshwater lake. Appl Environ Microb 77:4429–4436

    Article  CAS  Google Scholar 

  • Donis D, Flury S, Stockli A, Spangenberg JE, Vachon D, McGinnis DF (2017) Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. Nat Commun 8:1661

    Article  CAS  Google Scholar 

  • Egger M, Rasigraf O, Sapart CJ, Jilbert T, Jetten MS, Rockmann T, van der Veen C, Banda N, Kartal B, Ettwig KF, Slomp CP (2015) Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ Sci Technol 49:277–283

    Article  CAS  Google Scholar 

  • Ettwig KF et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  Google Scholar 

  • Euler S, Jeffrey LC, Maher DT, Mackenzie D, Tait DR (2020) Shifts in methanogenic archaea communities and methane dynamics along a subtropical estuarine land use gradient. PLoS One 15:e0242339

    Article  CAS  Google Scholar 

  • Gao Y, Lee J, Neufeld JD, Park J, Rittmann BE, Lee HS (2017) Anaerobic oxidation of methane coupled with extracellular electron transfer to electrodes. Sci Rep 7:5099

    Article  Google Scholar 

  • Goldman AE, Cadieux SB, White JR, Pratt LM (2016) Passive sampling method for high-resolution concentration and isotopic composition of dissolved methane in arctic lakes. Limnol Oceanogr- Methods 14:69–78

    Article  Google Scholar 

  • Hansel CM, Lentini CJ, Tang Y, Johnston DT, Wankel SD, Jardine PM (2015) Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. ISME J 9:2400–2412

    Article  CAS  Google Scholar 

  • Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570

    Article  CAS  Google Scholar 

  • He Q, Yu L, Li J, He D, Cai X, Zhou S (2019) Electron shuttles enhance anaerobic oxidation of methane coupled to iron(iii) reduction. Sci Total Environ 688:664–672

    Article  CAS  Google Scholar 

  • He Z, Zhang Q, Feng Y, Luo H, Pan X, Gadd GM (2018) Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. Sci Total Environ 610–611:759–768

    Article  Google Scholar 

  • Heuer VB, Krüger M, Elvert M, Hinrichs K-U (2010) Experimental studies on the stable carbon isotope biogeochemistry of acetate in lake sediments. Org Geochem 41:22–30

    Article  CAS  Google Scholar 

  • Hu S, Zeng RJ, Haroon MF, Keller J, Lant PA, Tyson GW, Yuan Z (2015) A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments. Sci Rep 5:8706

    Article  CAS  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1990) Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol Ecol 73:339–344

    Article  CAS  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  Google Scholar 

  • Kurth JM, Smit NT, Berger S, Schouten S, Jetten MSM, Welte CU (2019) Anaerobic methanotrophic archaea of the ANME-2d clade feature lipid composition that differs from other ANME archaea. FEMS Microbiol Ecol 95:fiz082

    Article  CAS  Google Scholar 

  • Lee HS, Tang Y, Rittmann BE, Zhao HP (2018) Anaerobic oxidation of methane coupled to denitrification: fundamentals, challenges, and potential. Crit Rev Envi Sci Tec 48:1067–1093

    Article  CAS  Google Scholar 

  • Lloyd KG, Alperin MJ, Teske A (2011) Environmental evidence for net methane production and oxidation in putative anaerobic methanotrophic (ANME) archaea. Environ Microbiol 13:2548–2564

    Article  CAS  Google Scholar 

  • Lomakina A, Pogodaeva T, Kalmychkov G, Chernitsyna S, Zemskaya T (2019) Diversity of NC10 bacteria and ANME-2d archaea in sediments of fault zones at Lake Baikal. Diversity 12:10

    Article  Google Scholar 

  • Mach V, Blaser MB, Claus P, Chaudhary PP, Rulik M (2015) Methane production potentials, pathways, and communities of methanogens in vertical sediment profiles of river sitka. Front Microbiol 6:506

    Article  Google Scholar 

  • Maeck A, Delsontro T, McGinnis DF, Fischer H, Flury S, Schmidt M, Fietzek P, Lorke A (2013) Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol 47:8130–8137

    Article  CAS  Google Scholar 

  • Maltby J, Steinle L, Löscher CR, Bange HW, Fischer MA, Schmidt M, Treude T (2018) Microbial methanogenesis in the sulfate-reducing zone of sediments in the EckernfördeBay, sw Baltic Sea. Biogeosciences 15:137–157

    Article  CAS  Google Scholar 

  • Mayr MJ, Zimmermann M, Guggenheim C, Brand A, Buergmann H (2020) Niche partitioning of methane-oxidizing bacteria along the oxygen-methane counter gradient of stratified lakes. ISME J 14:274–287

    Article  CAS  Google Scholar 

  • Melton ED, Stief P, Behrens S, Kappler A, Schmidt C (2014) High spatial resolution of distribution and interconnections between Fe- and N-redox processes in profundal lake sediments. Environ Microbiol 16:3287–3303

    Article  CAS  Google Scholar 

  • Mendonça R, Barros N, Vidal LO, Pacheco F, Kosten S, Roland F (2012) Greenhouse gas emissions from hydroelectric reservoirs: what knowledge do we have and what is lacking? in: Liu GX (Ed.), Greenhouse Gases-Emission Measurement and Management Rijeka, InTech, pp. 55–77

  • Nie WB, Ding J, Xie GJ, Tian X, Lu Y, Peng L, Liu FB, XinG DF, Yuan ZG, Ren NQ (2021) Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon, nitrogen and sulfur cycles. Water Res 194(5):116928

  • Norði KÁ, Thamdrup B (2014) Nitrate-dependent anaerobic methane oxidation in a freshwater sediment. Geochim Cosmochim Acta 132:141–150

    Article  Google Scholar 

  • Norði KA, Thamdrup B, Schubert CJ (2013) Anaerobic oxidation of methane in an iron-rich danish freshwater lake sediment. Limnol Oceanogr 58:546–554

    Article  Google Scholar 

  • Oni OE, Friedrich MW (2017) Metal oxide reduction linked to anaerobic methane oxidation. Trends Microbiol 25:88–90

    Article  CAS  Google Scholar 

  • Quadra GR, Sobek S, Paranaíba JR, Isidorova A, Roland F, do Vale R, Mendonça R (2020) High organic carbon burial but high potential for methane ebullition in the sediments of an amazonian hydroelectric reservoir. Biogeosciences 17:1495–1505

    Article  CAS  Google Scholar 

  • Riedinger N, Formolo MJ, Lyons TW, Henkel S, Beck A, Kasten S (2014) An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiol 12:172–181

    Article  CAS  Google Scholar 

  • Rissanen AJ, Jilbert T, Simojoki A, Mangayil R, Aalto SL, Peura S, Jäntti H (2021a) Anaerobic oxidation of methane in sediments of a nitrate-rich, oligo-mesotrophic boreal lake. bioRxiv 426818

  • Rissanen AJ, Saarela T, Jäntti H, Buck M, Peura S, Aalto SL, Ojala A, Pumpanen J, Tiirola M, Elvert M, Nykänen H (2021b) Vertical stratification patterns of methanotrophs and their genetic controllers in water columns of oxygen-stratified boreal lakes. FEMS Microbiol Ecol 97:fiaa252

    Article  CAS  Google Scholar 

  • Rosentreter JA, Borges AV, Deemer B, Holgerson MA, Liu S, Song C, Melack JM, Raymond PA, Duarte CM, Allen GH, Olefeldt D, Poulter B, Batin TI, Eyre BD (2021) Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat Geosci 14:225–230

    Article  CAS  Google Scholar 

  • Scholten JCM, Stams AJM (2000) Isolation and characterization of acetate-utilizing anaerobes from a freshwater sediment. Microb Ecol 40:292–299

    Article  CAS  Google Scholar 

  • Sela-Adler M, Ronen Z, Herut B, Antler G, Vigderovich H, Eckert W, Sivan O (2017) Co-existence of methanogenesis and sulfate reduction with common substrates in sulfate-rich estuarine sediments. Fronti Microbiol 8:766

    Article  Google Scholar 

  • Sivan O, Adler M, Pearson A, Gelman F, Bar-Or I, John SG, Eckert W (2011) Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol Oceanogr 56:8

    Article  Google Scholar 

  • Su G, Niemann H, Steinle L, Zopfi J, Lehmann MF (2019) Evaluating radioisotope-based approaches to measure anaerobic methane oxidation rates in lacustrine sediments. Limnol Oceanogr Meth 17:429–438

  • Wassmann R, Neue HU, Bueno C, Lantin RS, Alberto MCR, Buendia LV, Bronson K, Papen H, Rennenberg H (1998) Methane production capacities of different rice soils derived from inherent and exogenous substrates. Plant Soil 203:227–237

    Article  CAS  Google Scholar 

  • Wells NS, Chen JJ, Maher DT, Huang P, Erler DV, Hipsey M, Eyre BD (2020) Changing sediment and surface water processes increase CH4 emissions from human-impacted estuaries. Geochim Cosmochim Acta 280:130–147

    Article  CAS  Google Scholar 

  • Westermann P, Ahring BK, Mah RA (1989) Threshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria. Appl Environ Microbiol 55:514–515

    Article  CAS  Google Scholar 

  • Xiao KQ, Beulig F, Kjeldsen KU, Jorgensen BB, Risgaard-Petersen N (2017) Concurrent methane production and oxidation in surface sediment from Aarhus Bay, Denmark. Front Microbiol 8:1198

    Article  Google Scholar 

  • Yang H, Yu S, Lu H (2021) Iron-coupled anaerobic oxidation of methane in marine sediments: a review. J Mar Sci Eng 9:875

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Project by Most of China (grant number 2016YFA0601000), National Natural Science Foundation of China (grant numbers 41776071, 41073072, 21677093), the Shanghai Science and Technology Committee (grant number 12231202004), Guangdong MEPP Fund (NO. GDOE[2019]A41), and Natural Science Foundation of Shanghai (21DZ1209403).

Author information

Authors and Affiliations

Authors

Contributions

F. Wang conceived and supervised the study. L. Liu, X. Chen designed the experiments. X. Chen, J. Yu, F. Bai, M. Yang, S. Bai, and Z. Chen performed the experiments. X. Chen, F. Bai, S. Bai, C. He, X. Liu, and J. Liang analysed the data. X. Chen, L. Liu, Z. Chen, J. Yu, and J. Sun wrote the manuscript. J. Liang revised the language express of manuscript.

Corresponding authors

Correspondence to Lihua Liu or Fushun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: Haihan Zhang

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1686 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yang, M., Sun, J. et al. The anaerobic oxidation of methane driven by multiple electron acceptors suppresses the release of methane from the sediments of a reservoir. J Soils Sediments 22, 682–691 (2022). https://doi.org/10.1007/s11368-022-03138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-022-03138-7

Keywords

Navigation