Skip to main content
Log in

Metal-dependent anaerobic methane oxidation in marine sediment: Insights from marine settings and other systems

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Anaerobic oxidation of methane (AOM) plays a crucial role in controlling global methane emission. This is a microbial process that relies on the reduction of external electron acceptors such as sulfate, nitrate/nitrite, and transient metal ions. In marine settings, the dominant electron acceptor for AOM is sulfate, while other known electron acceptors are transient metal ions such as iron and manganese oxides. Despite the AOM process coupled with sulfate reduction being relatively well characterized, researches on metal-dependent AOM process are few, and no microorganism has to date been identified as being responsible for this reaction in natural marine environments. In this review, geochemical evidences of metal-dependent AOM from sediment cores in various marine environments are summarized. Studies have showed that iron and manganese are reduced in accordance with methane oxidation in seeps or diffusive profiles below the methanogenesis zone. The potential biochemical basis and mechanisms for metal-dependent AOM processes are here presented and discussed. Future research will shed light on the microbes involved in this process and also on the molecular basis of the electron transfer between these microbes and metals in natural marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Norði, K., and Thamdrup, B. (2014). Nitrate-dependent anaerobic methane oxidation in a freshwater sediment. Geochim Cosmochim Acta 132, 141–150.

    Article  CAS  Google Scholar 

  • Bar-Or, I., Elvert, M., Eckert, W., Kushmaro, A., Vigderovich, H., Zhu, Q., Ben-Dov, E., and Sivan, O. (2017). Iron-coupled anaerobic oxidation of methane performed by a mixed bacterial-archaeal community based on poorly-reactive minerals. Environ Sci Technol 51, 12293–12301.

    Article  CAS  PubMed  Google Scholar 

  • Beal, E.J., House, C.H., and Orphan, V.J. (2009). Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187.

    Article  CAS  PubMed  Google Scholar 

  • Berghuis, B.A., Yu, F.B., Schulz, F., Blainey, P.C., Woyke, T., and Quake, S.R. (2019). Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proc Natl Acad Sci USA 116, 5037–5044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., and Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626.

    Article  CAS  PubMed  Google Scholar 

  • Borrel, G., Adam, P.S., McKay, L.J., Chen, L.X., Sierra-García, I.N., Sieber, C.M.K., Letourneur, Q., Ghozlane, A., Andersen, G.L., Li, W.J., et al. (2019). Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol 4, 603–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd, J.A., Jungbluth, S.P., Leu, A.O., Evans, P.N., Woodcroft, B.J., Chadwick, G.L., Orphan, V.J., Amend, J.P., Rappé, M.S., and Tyson, G. W. (2019). Divergent methyl-coenzyme M reductase genes in a deep-subseafloor Archaeoglobi. ISME J 13, 1269–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, C., Leu, A.O., Xie, G.J., Guo, J., Feng, Y., Zhao, J.X., Tyson, G.W., Yuan, Z., and Hu, S. (2018). A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J 12, 1929–1939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldwell, S.L., Laidler, J.R., Brewer, E.A., Eberly, J.O., Sandborgh, S.C., and Colwell, F.S. (2008). Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42, 6791–6799.

    Article  CAS  PubMed  Google Scholar 

  • Canfield, D.E. (1989). Reactive iron in marine sediments. Geochim Cosmochim Acta 53, 619–632.

    Article  CAS  PubMed  Google Scholar 

  • Canfield, D.E., Raiswell, R., and Bottrell, S.H. (1992). The reactivity of sedimentary iron minerals toward sulfide. Am J Sci 292, 659–683.

    Article  CAS  Google Scholar 

  • (a) Canfield, D.E., Rosing, M.T., and Bjerrum, C. (2006). Early anaerobic metabolisms. Philos Trans R Soc B-Biol Sci 361, 1819–1836.; (b) discussion 1835–1816.

    Article  CAS  Google Scholar 

  • Chen, Y., Feng, X., He, Y., and Wang, F. (2016). Genome analysis of a Limnobacter sp. identified in an anaerobic methane-consuming cell consortium. Front Mar Sci 3, 257.

    Google Scholar 

  • Chen, Y., Li, Y.L., Zhou, G.T., Li, H., Lin, Y.T., Xiao, X., and Wang, F.P. (2014). Biomineralization mediated by anaerobic methane-consuming cell consortia. Sci Rep 4, 5696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., and Heimann, M. (2014). Carbon and other biogeochemical cycles. In Climate change 2013: the physical science basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press), pp. 465–570.

    Google Scholar 

  • Colman, D.R., Lindsay, M.R., and Boyd, E.S. (2019). Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities. Nat Commun 10, 681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crowe, S.A., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., Pack, M.A., Kessler, J.D., Reeburgh, W.S., Roberts, J.A., et al. (2011). The methane cycle in ferruginous Lake Matano. Geobiology 9, 61–78.

    Article  CAS  PubMed  Google Scholar 

  • D’Hondt, S., Jørgensen, B.B., Miller, D.J., Batzke, A., Blake, R., Cragg, B.A., Cypionka, H., Dickens, G.R., Ferdelman, T., Hinrichs, K.U., et al. (2004). Distributions of microbial activities in deep subseafloor sediments. Science 306, 2216–2221.

    Article  PubMed  CAS  Google Scholar 

  • Egger, M., Hagens, M., Sapart, C.J., Dijkstra, N., van Helmond, N.A.G.M., Mogollón, J.M., Risgaard-Petersen, N., van der Veen, C., Kasten, S., Riedinger, N., et al. (2017). Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochim Cosmochim Acta 207, 256–276.

    Article  CAS  Google Scholar 

  • Egger, M., Kraal, P., Jilbert, T., Sulu-Gambari, F., Sapart, C.J., Röckmann, T., and Slomp, C.P. (2016). Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea. Biogeosciences 13, 5333–5355.

    Article  CAS  Google Scholar 

  • Egger, M., Rasigraf, O., Sapart, C.J., Jilbert, T., Jetten, M.S.M., Röckmann, T., van der Veen, C., Bândă, N., Kartal, B., Ettwig, K.F., et al. (2015). Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ Sci Technol 49, 277–283.

    Article  CAS  PubMed  Google Scholar 

  • Emerson, S., and Hedges, J. (2003). Sediment diagenesis and benthic flux. Treatise on geochemistry 6, 625.

    Google Scholar 

  • Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., de Beer, D., et al. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548.

    Article  CAS  PubMed  Google Scholar 

  • Ettwig, K.F., Zhu, B., Speth, D., Keltjens, J.T., Jetten, M.S.M., and Kartal, B. (2016). Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA 113, 12792–12796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans, P.N., Parks, D.H., Chadwick, G.L., Robbins, S.J., Orphan, V.J., Golding, S.D., and Tyson, G.W. (2015). Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438.

    Article  CAS  PubMed  Google Scholar 

  • Hallam, S.J., Putnam, N., Preston, C.M., Detter, J.C., Rokhsar, D., Richardson, P.M., and DeLong, E.F. (2004). Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462.

    Article  CAS  PubMed  Google Scholar 

  • Han, X.Q., Yang, K.H., and Huang, Y.Y. (2013). Origin and nature of cold seep in northeastern Dongsha area, South China Sea: Evidence from chimney-like seep carbonates. Chin Sci Bull 58, 3689–3697.

    Article  CAS  Google Scholar 

  • Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., and Tyson, G.W. (2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570.

    Article  CAS  PubMed  Google Scholar 

  • He, Z., Zhang, Q., Feng, Y., Luo, H., Pan, X., and Gadd, G.M. (2018). Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. Sci Total Environ 610–611, 759–768.

    Article  PubMed  CAS  Google Scholar 

  • Hinrichs, K.U., Hayes, J.M., Sylva, S.P., Brewer, P.G., and DeLong, E.F. (1999). Methane-consuming archaebacteria in marine sediments. Nature 398, 802–805.

    Article  CAS  PubMed  Google Scholar 

  • Hoehler, T.M., Alperin, M.J., Albert, D.B., and Martens, C.S. (1994). Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycl 8, 451–463.

    Article  CAS  Google Scholar 

  • Holmkvist, L., Ferdelman, T.G., and Jørgensen, B.B. (2011). A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta 75, 3581–3599.

    Article  CAS  Google Scholar 

  • Hu, S., Zeng, R.J., Burow, L.C., Lant, P., Keller, J., and Yuan, Z. (2009). Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environ MicroBiol Rep 1, 377–384.

    Article  CAS  PubMed  Google Scholar 

  • Iversen, N., and Jorgensen, B.B. (1985). Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)1. Limnol Oceanogr 30, 944–955.

    Article  CAS  Google Scholar 

  • Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., et al. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71.

    Article  CAS  PubMed  Google Scholar 

  • Knab, N.J., Dale, A.W., Lettmann, K., Fossing, H., and Jørgensen, B.B. (2008). Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments. Geochim Cosmochim Acta 72, 3746–3757.

    Article  CAS  Google Scholar 

  • Knittel, K., and Boetius, A. (2009). Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63, 311–334.

    Article  CAS  PubMed  Google Scholar 

  • Laso-Pérez, R., Wegener, G., Knittel, K., Widdel, F., Harding, K.J., Krukenberg, V., Meier, D.V., Richter, M., Tegetmeyer, H.E., Riedel, D., et al. (2016). Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539, 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y.Z., Fu, L., Ding, J., Ding, Z.W., Li, N., and Zeng, R.J. (2016). Cr(VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor. Water Res 102, 445–452.

    Article  CAS  PubMed  Google Scholar 

  • McGlynn, S.E. (2017). Energy metabolism during anaerobic methane oxidation in ANME archaea. Microbes Environ 32, 5–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGlynn, S.E., Chadwick, G.L., Kempes, C.P., and Orphan, V.J. (2015). Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535.

    Article  CAS  PubMed  Google Scholar 

  • McKay, L.J., Dlakić, M., Fields, M.W., Delmont, T.O., Eren, A.M., Jay, Z.J., Klingelsmith, K.B., Rusch, D.B., and Inskeep, W.P. (2019). Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat Microbiol 4, 614–622.

    Article  CAS  PubMed  Google Scholar 

  • Mehta, T., Coppi, M.V., Childers, S.E., and Lovley, D.R. (2005). Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ MicroBiol 71, 8634–8641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, J., Xu, J., Qin, D., He, Y., Xiao, X., and Wang, F. (2014). Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J 8, 650–659.

    Article  CAS  PubMed  Google Scholar 

  • Merinero, R., Ruiz-Bermejo, M., Menor-Salván, C., Lunar, R., and Martínez-Frías, J. (2012). Tracing organic compounds in aerobically altered methane-derived carbonate pipes (Gulf of Cadiz, SW Iberia). SedimentaryGeol 263–264, 174–182.

    Google Scholar 

  • Niu, M., Fan, X., Zhuang, G., Liang, Q., and Wang, F. (2017). Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea. FEMS Microbiol Ecol 93.

  • Oni, O., Miyatake, T., Kasten, S., Richter-Heitmann, T., Fischer, D., Wagenknecht, L., Kulkarni, A., Blumers, M., Shylin, S.I., Ksenofontov, V., et al. (2015). Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Front Microbiol 6, 365.

    PubMed  PubMed Central  Google Scholar 

  • Orphan, V.J., House, C.H., Hinrichs, K.U., McKeegan, K.D., and DeLong, E.F. (2001). Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487.

    Article  CAS  PubMed  Google Scholar 

  • Pellerin, A., Antler, G., Røy, H., Findlay, A., Beulig, F., Scholze, C., Turchyn, A.V., and Jørgensen, B.B. (2018). The sulfur cycle below the sulfate-methane transition of marine sediments. Geochim Cosmochim Acta 239, 74–89.

    Article  CAS  Google Scholar 

  • Peng, X., Guo, Z., Chen, S., Sun, Z., Xu, H., Ta, K., Zhang, J., Zhang, L., Li, J., and Du, M. (2017). Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply. Geochim Cosmochim Acta 205, 1–13.

    Article  CAS  Google Scholar 

  • Pernthaler, A., Dekas, A.E., Titus Brown, C., Goffredi, S.K., Embaye, T., and Orphan, V.J. (2008). Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA 105, 7052–7057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulton, S.W., and Raiswell, R. (2000). Solid phase associations, oceanic fluxes and the anthropogenic perturbation of transition metals in world river particulates. Mar Chem 72, 17–31.

    Article  CAS  Google Scholar 

  • Raghoebarsing, A.A., Pol, A., van de Pas-Schoonen, K.T., Smolders, A.J.P., Ettwig, K.F., Rijpstra, W.I.C., Schouten, S., Damsté, J.S.S., Opden Camp, H.J.M., Jetten, M.S.M., et al. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921.

    Article  CAS  PubMed  Google Scholar 

  • Reeburgh, W.S. (1976). Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett 28, 337344.

    Article  Google Scholar 

  • Reeburgh, W.S. (2007). Oceanic methane biogeochemistry. Chem Rev 107, 486–513.

    Article  CAS  PubMed  Google Scholar 

  • Reitner, J., Peckmann, J., Blumenberg, M., Michaelis, W., Reimer, A., and Thiel, V. (2005a). Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeogr Palaeoclimatol Palaeoecol 227, 18–30.

    Article  Google Scholar 

  • Reitner, J., Peckmann, J., Reimer, A., Schumann, G., and Thiel, V. (2005b). Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea). Facies 51, 66–79.

    Article  Google Scholar 

  • Riedinger, N., Formolo, M.J., Lyons, T.W., Henkel, S., Beck, A., and Kasten, S. (2014). An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology 12, 172–181.

    Article  CAS  PubMed  Google Scholar 

  • Rooze, J., Egger, M., Tsandev, I., and Slomp, C.P. (2016). Iron-dependent anaerobic oxidation of methane in coastal surface sediments: Potential controls and impact. Limnol Oceanogr 61, S267–S282.

    Article  CAS  Google Scholar 

  • Scheller, S., Goenrich, M., Boecher, R., Thauer, R.K., and Jaun, B. (2010). The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465, 606–608.

    Article  CAS  PubMed  Google Scholar 

  • Scheller, S., Yu, H., Chadwick, G.L., McGlynn, S.E., and Orphan, V.J. (2016). Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703–707.

    Article  CAS  PubMed  Google Scholar 

  • Segarra, K.E.A., Comerford, C., Slaughter, J., and Joye, S.B. (2013). Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochim Cosmochim Acta 115, 15–30.

    Article  CAS  Google Scholar 

  • Seitz, K.W., Dombrowski, N., Eme, L., Spang, A., Lombard, J., Sieber, J.R., Teske, A.P., Ettema, T.J.G., and Baker, B.J. (2019). Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun 10, 1822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen, L.D., Hu, B.L., Liu, S., Chai, X.P., He, Z.F., Ren, H.X., Liu, Y., Geng, S., Wang, W., Tang, J.L., et al. (2016). Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments. Appl Microbiol Biotechnol 100, 7171–7180.

    Article  CAS  PubMed  Google Scholar 

  • Sivan, O., Antler, G., Turchyn, A.V., Marlow, J.J., and Orphan, V.J. (2014). Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps. Proc Natl Acad Sci USA 111, E4139–E4147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivan, O., Schrag, D.P., and Murray, R.W. (2007). Rates of methanogenesis and methanotrophy in deep-sea sediments. Geobiology 5, 141–151.

    Article  CAS  Google Scholar 

  • Slomp, C.P., Mort, H.P., Jilbert, T., Reed, D.C., Gustafsson, B.G., and Wolthers, M. (2013). Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane. PLoS ONE 8, e62386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Z., Wei, H., Zhang, X., Shang, L., Yin, X., Sun, Y., Xu, L., Huang, W., and Zhang, X. (2015). A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea. Deep Sea Res Part I-Oceanographic Res Papers 95, 37–53.

    Article  CAS  Google Scholar 

  • Timmers, P.H.A., Welte, C.U., Koehorst, J.J., Plugge, C.M., Jetten, M.S.M., and Stams, A.J.M. (2017). Reverse methanogenesis and respiration in methanotrophic archaea. Archaea 2017(17), 1–22.

    Article  CAS  Google Scholar 

  • Tong, H., Feng, D., Cheng, H., Yang, S., Wang, H., Min, A.G., Edwards, R.L., Chen, Z., and Chen, D. (2013). Authigenic carbonates from seeps on the northern continental slope of the South China Sea: new insights into fluid sources and geochronology. Mar Pet Geol 43, 260–271.

    Article  CAS  Google Scholar 

  • Treude, T., Krause, S., Maltby, J., Dale, A.W., Coffin, R., and Hamdan, L.J. (2014). Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling. Geochim Cosmochim Acta 144, 217–237.

    Article  CAS  Google Scholar 

  • Vanwonterghem, I., Evans, P.N., Parks, D.H., Jensen, P.D., Woodcroft, B.J., Hugenholtz, P., and Tyson, G.W. (2016). Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1, 16170.

    Article  CAS  PubMed  Google Scholar 

  • Vigderovich, H., Liang, L., Herut, B., Wang, F., Wurgaft, E., Rubin-Blum, M., and Sivan, O. (2019). Evidence for microbial iron reduction in the methanogenic sediments of the oligotrophic SE Mediterranean continental shelf. Biogeosci Discuss 16, 1–25.

    Article  CAS  Google Scholar 

  • Wang, F.P., Zhang, Y., Chen, Y., He, Y., Qi, J., Hinrichs, K.U., Zhang, X.X., Xiao, X., and Boon, N. (2014). Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J 8, 1069–1078.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Feng, X., Natarajan, V.P., Xiao, X., and Wang, F. (2019a). Diverse anaerobic methane- and multi-carbon alkane-metabolizing archaea coexist and show activity in Guaymas Basin hydrothermal sediment. Environ Microbiol 21, 1344–1355.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Wegener, G., Hou, J., Wang, F., and Xiao, X. (2019b). Expanding anaerobic alkane metabolism in the domain of Archaea. Nat Microbiol 4, 595–602.

    Article  CAS  PubMed  Google Scholar 

  • Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H.E., and Boetius, A. (2015). Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Z., Joshi, P., Gorski, C.A., and Ferry, J.G. (2018). A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration. Nat Commun 9, 1642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zehnder, A.J., and Brock, T.D. (1980). Anaerobic methane oxidation: occurrence and ecology. Appl Environ Microbiol 39, 194–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Wenyue Liang, Minyang Niu, Zeyu Jia and Yunru Chen from Shanghai Jiao Tong University for providing help either on figure visualization or suggestions. This work was supported by the National Natural Science Foundation of China (91751205, 41525011), the National Key R&D project of China (2018YFC0310800), China Postdoctoral Science Foundation Grant (2018T110390), and the joint Israel Science Foundation-National Natural Science Foundation of China (ISF-NSFC) (31661143022 (FW), 2561/16 (OS)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengping Wang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Wang, Y., Sivan, O. et al. Metal-dependent anaerobic methane oxidation in marine sediment: Insights from marine settings and other systems. Sci. China Life Sci. 62, 1287–1295 (2019). https://doi.org/10.1007/s11427-018-9554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9554-5

Keywords

Navigation