Skip to main content
Log in

Precipitation of secondary phases of iron and its role in controlling the mobility of potentially toxic elements in soils in a semiarid river basin in Northwest Mexico

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Soils have the ability to retain potentially toxic elements (PTEs) through different chemical processes that promote low mobility of these elements, such as the precipitation of secondary phases of Fe, which facilitate the adsorption/co-precipitation of PTEs. The main objective of this study was to evaluate the mobility of PTEs present in an acid solution in two soils with different concentrations of calcite, understanding the role of secondary iron phases in the retention of these elements.

Materials and methods

To evaluate this phenomenon, intact soil columns of two different types of soils from the Sonora River in Northwest Mexico were exposed to an acid solution with high concentration of dissolved PTEs (mainly Fe, Al, and Cu).

Results and discussion

The Tinajas soil was free of carbonates while the Bacanuchi soil had more carbonate content than the Tinajas soil. Secondary precipitates corresponding to secondary phases of iron (mainly ferrihydrite and jarosite) were identified by X-ray diffraction. Using scanning electron microscopy, the PTEs retained in the soils were identified. The presence of calcite favored the neutral pH values in the collected leachates in the Bacanuchi soil; consequently, the mobility of the PTEs present in the acid solution was nullified. Furthermore, this process facilitated the retention of the toxic elements in the Bacanuchi soil.

Conclusions

The retention of PTEs was 100% in the Bacanuchi soil where the natural acid-neutralizing capacity in this soil was associated with calcite. The formation of secondary phases of Fe, among them ferrihydrite, jarosite, and schwertmannite, mainly in Bacanuchi soil, promoted the retention of Al, As, Cd, Cu, Fe, Mn, and Pb (elements analyzed in this work). Results of this work can provide key insights to improve cleanup and conservation strategies in mining sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alloway BJ (1995) Soil processes and the behavior of metals. In: Alloway BJ (ed) Heavy metals in soils, London, pp 38-57

  • Araujo MJ (1993) Evolución paleogeográfica del cretácico inferior en la región noreste de Sonora. III simposio de la Geología de Sonora y área adyacentes. Instituto de Geología. UNI-SON, pp 4-5

  • Banzhaf S, Hebig KH (2016) Use of columns experiments to investigate the fate of organic micropollutants. Hydrol Earth Syst Sci 20:3719–3737

    CAS  Google Scholar 

  • Bigham JM, Schwermann U, Traina SJ, Winland RL, Wolf M (1996) Schwermannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121

    CAS  Google Scholar 

  • Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulphate water, in Alpers, C N., Jambor, JL., Nordstrom, DK. Reviews in mineralogy and geochemistry – sulfate minerals: crystallography, geochemistry, and environmental significance: Washington, DC, The Mineralogical Society of America, 351-403.

  • Camobreco VJ, Richards BK, Steenhuis TS, Peverly JH, McBride MB (1996) Movement of heavy metals through undisturbed and homogenized soil columns. Soil Sci 161:740–750

    CAS  Google Scholar 

  • Caporale A, Violante A (2016) Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Curr Pollut Rep 2:15–27

    CAS  Google Scholar 

  • Chon H, Hwang J (2000) Geochemical characteristics of the acid mine drainage in the water system in the vicinity of the Dogye coal mine in Korea. Environ Geochem Health 22:155–172

    CAS  Google Scholar 

  • CONAGUA (2011) Determinación de la disponibilidad de agua en el acuífero 2628 Río Bacanuchi, Estado de Sonora. Diario Oficial de la Federación, pp:3–28

  • Cravotta CA III, Trahan MK (1999) Limestonedrains to increase pH and remove dissolved metals from acidic mine drainage. Appl Geochem 14:581–606

    CAS  Google Scholar 

  • Cravotta CA III (2008) Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: Geochemical controls on constituent concentrations. Appl Geochem 23:203–226

    CAS  Google Scholar 

  • Cruz R, Méndez BA, Monroy M, González I (2001) Cyclic voltammetry applied to evaluate reactivity in sulfide mining residues. Appl Geochem 16:1631–1640

    CAS  Google Scholar 

  • Dold B (1999) Mineralogical and geochemical changes of cooper flotation tailing in relation to their original composition and climatic setting: implications for acid mine drainage and element mobility. Université de Genéve, Institute Fore, Déparment de Mineralogie, Départment de Géologie et Paleontologie, Section des Sciences de la Terre, PhD Thesis, 230 pages.

  • Dold B (2003) Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction (DXRD). Appl Geochem 18:1531–1540

    CAS  Google Scholar 

  • Dutrizac JE, Jambor JL (1987) The behavior of arsenic during jarosite precipitation: arsenic precipitation at 97 °C from sulfate or chloride media. Can Metall Q 26:91–101

    CAS  Google Scholar 

  • Foster AL, Brown GE, Tingle TN, Parks GA (1998) Quantitative arsenic speciation in mine tailing using X-ray adsorption spectroscopy. Am Mineral 83:553–568

    CAS  Google Scholar 

  • Fukushi K, Sasaki M, Sato T, Yanase N, Amano H, Ikeda H (2003) A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl Geochem 18:1267–1278

    CAS  Google Scholar 

  • Fuller CC, Davis JA, Waychunas GA (1993) Surface chemistry of ferrihydrite: part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim Cosmochim Acta 57:2271–2282

    CAS  Google Scholar 

  • Galán Huertos E, Romero Baena A (2008) Contaminación de suelos por metales pesados. Macla: Revista de la Sociedad Española de Mineralogía 10:48–60

    Google Scholar 

  • Goldberg S (2002) Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci Soc Am J 66:413–421

    CAS  Google Scholar 

  • Gray NF (1998) Acid mine drainage composition and the implications for its impact on lotic systems. Water Res 32:2122–2134

    CAS  Google Scholar 

  • Gustafsson JP (2010) Visual MINTEQ Ver 3.0. A free equilibrium speciation model software: Stockholm, Sweden. https://vminteq.lwr.kth.se/

  • Gutiérrez ME, Romero FM (2015) Valoración ambiental de la Cuenca del Rio Sonora, asociado al derrame del 06 de Agosto del 2014 de Buena Vista del Cobre. AIMMGM, XXXI Convención Internacional de Minería, Acapulco Gro, México, Octubre 7-10:604–616

    Google Scholar 

  • Heikkinen PM, Räisänen ML (2009) Trace metal and As solid-phase speciation in sulphide mine tailings – indicators of spatial distribution of sulphide oxidation in active tailings impoundments. Appl Geochem 24:1224–1237

    CAS  Google Scholar 

  • Hahn J, Opp C, Zitzer N, Laufenberg G (2016) Impacts of river impoundment on dissolved heavy metals in floodplain soils of the Lahn River (Germany). Environ Earth Sci 75:1141–1152

    Google Scholar 

  • INEGI (2009) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Arizpe, Sonora, Clave geoestadística 26006 http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/26/26006.pdf

  • Jambor JL, Dutrizac JE (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem Rev 98:2549–2586

    CAS  Google Scholar 

  • Kelderman P, Osman AA (2007) Effect of redox potential on heavy metal binding form in polluted canal sediments in Delft (The Netherlands). Water Res 41:4251–4261

    CAS  Google Scholar 

  • Komárek M, Vaněk A, Ettler V (2013) Chemical stabilization of metals and arsenic in contaminated soils using oxides - a review. Environ Pollut 172:9–22

    Google Scholar 

  • Meinert LD (1982) Skarn, manto, and breccia pipe formation in sedimentary rocks of the Cananea mining district, Sonora, Mexico. Econ Geol 77:919–949

    CAS  Google Scholar 

  • Méndez BA, Carrillo A, Monroy MG, Levresse G (2012) Influencia del pH y la alcalinidad en la adsorción de As y metales pesados por oxihidróxidos de Fe en jales mineros de tipo skarn de Pb-Zn-Ag. Revista Mexicana de Ciencias Geológicas 29:639–648

    Google Scholar 

  • Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release, transport and attenuation of metals from an old tailings impoundment. Appl Geochem 20:639–659

    CAS  Google Scholar 

  • Nordstrom DK, Ball JW (1986) The geochemical behavior of aluminum in acidified surface waters. Science 232:54–56

    CAS  Google Scholar 

  • Otero Fariña A, Gago R, Antelo J, Fiol S, Arce F (2015) Surface complexation modelling of arsenic and copper immobilization by iron oxide precipitates derived from acid mine drainage. Bol Soc Geol Mex 67:493–508

    Google Scholar 

  • Razo I, Carrizales L, Castro J, Díaz F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut 152:129–152

    CAS  Google Scholar 

  • Reglero MM, Monsalve-González L, Taggart MA, Mateo R (2008) Transfer of metals to plants and red deer in an old lead mining area in Spain. Sci Total Environ 406:287–297

    CAS  Google Scholar 

  • Reyhanitabar A, Ramezanzadeh H, Oustan S, Neyshabouri M (2017) Comparison of batch and column methods in zinc sorption in a sandy soil. Int J Adv Sci Eng Technol 5:19–22

    Google Scholar 

  • Rodríguez C, Leiva-Aravena E, Serrano J, Leiva E (2018) Occurrence and removal of copper and aluminum in a stream confluence affected by acid mine drainage. Water 10:516–528

    Google Scholar 

  • Romero FM, Armienta MA, González-Hernández G (2007) Solid-phase control on the mobility of potentially toxic elements in an abandoned lead/zinc mine tailings impoundment, Taxco, Mexico. Appl Geochem 22:109–127

    CAS  Google Scholar 

  • Ruíz-Canovas C, Olías M, Nieto JS (2014) Metal(loid) attenuation processes in an extremely acidic river: the Rio Tinto (SW Spain). Water Air Soil Pollut 225:1795–1809

    Google Scholar 

  • Sahoo PK, Tripathy S, Panigrahi MK, Equeenuddin S (2012) Mineralogy of Fe-precipitates and their role in metal retention from an acid mine drainage site in India. Mine Water Environ 31:344–352

    CAS  Google Scholar 

  • Sánchez-España J, Yusta I, Diez-Ercilla M (2011) Schwertmannite and hydrobasaluminite: a re-evaluation of their solubility and control on the iron and aluminium concentration in acidic pit lakes. Appl Geochem 26:1752–1774

    Google Scholar 

  • Sangiumsak N, Punrattanasin P (2014) Adsorption behavior of heavy metal on various soils. Pol J Environ Stud 23:853–865

    CAS  Google Scholar 

  • Servicio Geológico Mexicano, SGM (1995-2000) Valores naturales de fondo de la cuenca del río Sonora.

  • Sherene T (2010) Mobility and transport of heavy metals in polluted soil environment. Biological Forum – An In J 2:112–121

    Google Scholar 

  • Siebe C, Jahn R, Stahr K (2006) Manual para la descripción y evaluación ecológica de suelos en el campo, 2a edn. Universidad Nacional Autónoma de México, 70 pp

  • Singer DA, Berger VI, Moring BC (2005) Porphyry copper deposits of the world: database, map, and grade and tonnage models. U.S Geological Survey.

    Google Scholar 

  • U.S Environmental Protection Agency (US-EPA) (2007) EPA Method 6200: Field Portable X-Ray Fluorescence Spectrometry for the determination of elemental concentration in soil and sediments.

  • Valencia MM, Ochoa LL, Noguez AB, Ruiz J, Pérez SE (2006) Características metalogénicas de los depósitos de tipo pórfido cuprífero en México y su situación en el contexto mundial. Sociedad Geológica Mexicana 1:1–26

    Google Scholar 

  • Violante A, Ricciardella M, Pigna M (2003) Adsorption of heavy metal on mixed Fe-Al oxides in the absence or presence of organic ligands. Water Air Soil Pollut 145:289–306

    CAS  Google Scholar 

  • Xu RK (2013) Interaction between heavy metals and variable charge surfaces. In: Xu JM, Sparks DL (eds) Molecular environmental soil science. Progress in Soil Science. Springer, Dordrecht, pp 193–228

    Google Scholar 

  • Zarga Y, Ben Boubaker H, Ghaffour N, Elfil H (2013) Study of calcium carbonate and sulfate co-precipitation. Chem Eng Sci 96:33–41

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank LANGEM, Dr. Teresa Pi Puig for the X-ray diffraction analyses, Mtro. Javier Tadeo León for the support in the ICP-OES analyses, and Dr. Olivia Zamora Martínez for the ion chromatography analysis. We also thank Dr. Adela Margarita Reyes Salas and Quím. Blanca Sonia Ángeles García for their assistance in conducting the scanning electron microscopy (MEB-EDS) and Mtro. Jaime Díaz Ortega for the support in the analysis of thin sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Prado.

Additional information

Responsible editor: Jianming Xue

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Fig. A Summary of the PTEs, HCO3- and SO42- concentrations in the leachates collected during the irrigations in the studied soils columns. Tinajas soil, first irrigation (T1), second irrigation (T2). Bacanuchi soil, first irrigation (B1), second irrigation (B2). Fig. B Principal Component Analysis (PCA) in Tinajas and Bacanuchi soils. Fig. C Results of the geochemical modeling considering the saturation index. Tinajas soil: first irrigation (T1), second irrigation (T2). Bacanuchi soil: first irrigation (B1), second irrigation (B2). Filled circles: Al4(OH)10SO4 (s), hollow rhombus: AlOHSO4 (s), filled triangles: alunite, hollow triangles: Cu3(AsO4)2: 2H2O (s), filled squares: ferrihydrite, hollow squares: gibbsite, filled rhombus: goethite, hollow circles: gypsum, crosses: k-jarosite, stars: anglesite. Fig. D Microphotography and electron emission spectra in a sample corresponding to Tinajas soil. Fig. E Microphotography and electron emission spectra in a sample corresponding to Bacanuchi soil. (DOCX 1197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziegler-Rivera, F.R.A., Prado, B., Robles-Morua, A. et al. Precipitation of secondary phases of iron and its role in controlling the mobility of potentially toxic elements in soils in a semiarid river basin in Northwest Mexico. J Soils Sediments 20, 3974–3993 (2020). https://doi.org/10.1007/s11368-020-02709-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-020-02709-w

Keywords

Navigation