Skip to main content

Advertisement

Log in

Evaluation of carbon mineralization and structural alterations of organic carbon in high-moor peat soils during incubation

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The quantity and quality of soil organic matter (SOM) in the wetlands and peatlands are important for evaluating of the effects of environmental changes. This study’s aim was to evaluate the change in the chemical properties of SOM and dissolved organic matter (DOM) during a constant temperature incubation of high-moor peat soil under two types of vegetation.

Materials and methods

Incubation of high-moor peat soils collected from marsh vegetation and dwarf bamboo was conducted for 108 days at each temperature of 25 °C and 35 °C. The chemical properties of alkaline extract and DOM in soil samples during incubation were analyzed by tetramethylammonium hydroxide thermochemolysis-gas chromatography-mass spectrometry (TMAH-GC/MS) and fluorescence analysis.

Results and discussion

The cumulative CO2 emission from peat under dwarf bamboo was higher than that of peat under marsh vegetation. During incubation at 35 °C, plant and microbial residues in DOM extracted from dwarf bamboo soil were increased significantly at the early stages of culture. On the other hand, the components of DOM in the marsh vegetation soil sample did not significantly change between incubation at each temperature. The fluorescence spectra showed that protein-like fluorescent DOM contained in dwarf bamboo soil is consumed by microorganisms, which promotes leaching of humic-like fluorescent DOM and carbon mineralization during the incubation period at a higher temperature.

Conclusions

Compared with marsh vegetation soil, the DOM in dwarf bamboo soil is susceptible to temperature rises and can be a larger source of CO2 emissions. This study shows that evaluation of DOM properties in soil could be useful to assess the effect of climate change on soil environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Funding

This work was supported by JSPS KAKENHI Grant-in-Aid for Early-Career Scientists (grant number 19K20464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuto Sazawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible editor: Anja Miltner

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazawa, K., Kubota, D., Yoshida, H. et al. Evaluation of carbon mineralization and structural alterations of organic carbon in high-moor peat soils during incubation. J Soils Sediments 20, 2843–2854 (2020). https://doi.org/10.1007/s11368-020-02637-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-020-02637-9

Keywords

Navigation