Skip to main content
Log in

Common flaws in the analysis of river sediments polluted by risk elements and how to avoid them: case study in the Ploučnice River system, Czech Republic

  • Sediments, Sec 1 • Sediment Quality and Impact Assessment • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

River channel sediments have been widely used to trace current and historical pollution in fluvial systems, although they are not the only media employed for that purpose. The current practice in such use of sediments from sampling strategy, sample pre-treatment and geochemical data processing frequently includes unsubstantiated and redundant steps (e.g., sieving by sub-millimetre meshes) and neglects certain relevant aspects (insufficient attention to what is actually sampled). The aim of this work was to improve that state and to remove redundant steps that make research more time-consuming and potentially introduce biases.

Materials and methods

The work presents data obtained in the identification of pollution sources in a small catchment with three tributaries (the Ploučnice River, the Czech Republic). The sediments were manually sampled in river channels in sites of recent accumulation of fine solids transported by the river. The samples were pulverised and analysed by X-ray fluorescence spectroscopy. The sediments are composed mostly of silt and sand with most chemical elements, including risk elements “diluted” by quartz and detritic organic matter, which are perfectly suited for geochemical normalization to correctly process compositional data. We avoided statistical tools based on Gaussian distribution, such as means and standard deviations, and instead used median-based statistics better fitting the known properties of geochemical datasets.

Results and discussion

Sediment sieving to sub-millimetre-size fractions was replaced by geochemical normalization best with Fe and possibly with Rb and Ti, with Al showing implausible performance. The normalization produces grain-size invariant compositional data. The performance of geochemical normalization and downstream variations of risk element concentrations (Pb and Zn) were tested by median-based criteria. Median smoothing of normalized risk element concentrations produced easily interpretable downstream variations of the pollution extent that were independent of grain-size effects and were robust towards the occasional presence of outliers.

Conclusions

Channel sediments are suitable for fluvial pollution monitoring if biased routines are avoided. The paper can inspire specialists who plan to perform environmental monitoring and desire to simplify their work and produce robust and unbiased estimates of pollution sources in fluvial systems under anthropogenic pressure. A similar approach could be tested for monitoring of pollution by further elements and hydrophobic organic compounds, except for the need to choose another normalizing element or TOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amorosi A, Guermandi M, Marchi N, Sammartino I (2014) Fingerprinting sedimentary and soil units by their natural metal contents: a new approach to assess metal contamination. Sci Total Environ 500:361–372

    Article  CAS  Google Scholar 

  • Bábek O, Matys Grygar T, Faměra M, Hron K, Nováková T, Sedláček J (2015) Geochemical background in polluted river sediments: how to separate the effects of sediment provenance and grain size with statistical rigour? Catena 135:240–253

    Article  CAS  Google Scholar 

  • Baborowski M, Einax JW (2016) Flood-event based metal distribution patterns in water as approach for source apportionment of pollution on catchment scale: examples from the River Elbe. J Hydrol 535:429–437

    Article  CAS  Google Scholar 

  • Birch GF (2017) Determination of sediment metal background concentrations and enrichment in marine environments—a critical review. Sci Total Environ 580:813–831

    Article  CAS  Google Scholar 

  • Bölviken B, Bogen J, Demetriades A, De Vos W, Ebbing J, Hindel R, Langedal M, Locutura J, O'Connor P, Ottesen RT, Pulkkinen E, Salminen R, Schermann O, Swennen R, Van der Sluys J, Volden T (1996) Regional geochemical mapping of Western Europe towards the year 2000. J Geochem Explor 56:141–166

    Article  Google Scholar 

  • Bouchez J, Gaillardet J, France-Lanord C, Maurice L, Dutra-Maia P (2011) Grain size control of river suspended sediment geochemistry: clues from Amazon River depth profiles. Geochem Geophys Geosyst 12:Q03008

    Article  CAS  Google Scholar 

  • Chen JB, Gaillardet J, Bouchez J, Louvat P, Wang YN (2014) Anthropophile elements in river sediments: overview from the Seine River, France. Geochem Geophys Geosyst 15:4526–4546

    Article  CAS  Google Scholar 

  • Callesen I, Keck H, Andersen TJ (2018) Particle size distribution in soils and marine sediments by laser diffraction using Malvern Mastersizer 2000—method uncertainty including the effect of hydrogen peroxide pretreatment. J Soils Sediments 18:2500–2510

    Article  CAS  Google Scholar 

  • Counihan TD, Waite IR, Nilsen EB, Hardiman JM, Elias E, Gelfenbaum G, Zaugg SD (2014) A survey of benthic sediment contaminants in reaches of the Columbia River estuary based on channel sedimentation characteristics. Sci Total Environ 484:331–343

    Article  CAS  Google Scholar 

  • Covelli S, Fontolan G (1997) Application of a normalization procedure in determining regional geochemical baselines. Environ Geol 30:34–45

    Article  CAS  Google Scholar 

  • Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Eviron 407:3972–3985

    Article  CAS  Google Scholar 

  • Faměra M, Bábek O, Matys Grygar T, Nováková T (2013) Distribution of heavy-metal contamination in regulated river-channel deposits: a magnetic susceptibility and grain-size approach; River Morava, Czech Republic. Water Air Soil Pollut 224:1525

    Article  CAS  Google Scholar 

  • Fikarová J, Kříženecká S, Elznicová J, Faměra M, Lelková T, Matkovič J, Matys Grygar T (2018) Spatial distribution of organic pollutants (PAHs and polar pesticides) in the floodplain of the Ohře (Eger) River, Czech Republic. J Soils Sediments 18:259–275

    Article  CAS  Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2009) Univariate statistical analysis of environmental (compositional) data: problems and possibilities. Sci Total Environ 407:6100–6108

    Article  CAS  Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2010) The bivariate statistical analysis of environmental (compositional) data. Sci Total Environ 408:4230–4238

    Article  CAS  Google Scholar 

  • Frančišković-Bilinski S, Cukrov N (2014) A critical evaluation of using bulk sediment instead of fine fraction in environmental marine studies, investigated on example of Rijeka harbor, Croatia. Environ Earth Sci 71:341–356

    Article  CAS  Google Scholar 

  • Garzanti E, Andò S, France-Lanord C, Vezzoli G, Censi P, Galy V, Najman Y (2010) Mineralogical and chemical variability of fluvial sediments. 1. Bedload sand (Ganga–Brahmaputra, Bangladesh). Earth Planet Sci Lett 299:368–381

    Article  CAS  Google Scholar 

  • Guan QY, Cai A, Wang FF, Wang L, Wu T, Pan BT, Song N, Li FC, Lu M (2016) Heavy metals in the riverbed surface sediment of the Yellow River, China. Environ Sci Pollut Res 23:24768–24780

    Article  CAS  Google Scholar 

  • Hrdoušek F (2005) Těžké kovy v sedimentech Panenského potoka a středního toku Ploučnice (Heavy metals in sediments of Panenský Creek and middle reach of Ploučnice). Diploma thesis, Faculty of Science, Charles University, Prague

  • Hurley RR, Rothwell JJ, Woodward JC (2017) Metal contamination of bed sediments in the Irwell and Mersey catchments, northwest England: exploring the legacy of industry and urban growth. J Soils Sediments 17:2648–2665

    Article  CAS  Google Scholar 

  • Jiang JB, Wang J, Liu SQ, Lin CY, He MC, Li XT (2013) Background, baseline, normalization, and contamination of heavy metals in the Liao River watershed sediments of China. J Asian Earth Sci 73:87–94

    Article  Google Scholar 

  • Kafka J (2003) Rudné a uranové hornictví České republiky (Ore and uranium mining in the Czech Republic). Czech Republic, DIAMO, p 647 ISBN 80-86331-67-9

    Google Scholar 

  • Kersten M, Smedes F (2002) Normalization procedures for sediment contaminants in spatial and temporal trend monitoring. J Environ Monit 4:109–115

    Article  CAS  Google Scholar 

  • Kolář J (2004) Distribuce vybraných těžkých kovů v sedimentech horního toku Ploučnice (Distribution of selected heavy metals in sediments of upper reach of Ploučnice). Diploma thesis, Faculty of Science, Charles University, Prague

  • Kühn J (1996) Distribuce uranu a vybraných těžkých kovů v sedimentech údolní nivy Ploučnice (Distribution of uranium and selected heavy metals in sediments of the floodplain of the Ploučnice River). Doctoral thesis, Faculty of Science, Charles University, Prague, 356

  • Laceby JP, Evrard O, Smith HG, Blake WH, Olley JM, Minella JPG, Owens PN (2017) The challenges and opportunities of addressing particle size effects in sediment source fingerprinting: a review. Earth Sci Rev 169:85–103

    Article  CAS  Google Scholar 

  • Liu JJ, Xu YZ, Cheng YX, Zhao YY, Pan YA, Fu GG, Dai YZ (2017) Occurrence and risk assessment of heavy metals in sediments of the Xiangjiang River, China. Environ Sci Pollut Res 24:2711–2723

    Article  CAS  Google Scholar 

  • Loring DH (1991) Normalization of heavy-metal data from estuarine and coastal sediments. ICES J Marine Sci 48:101–115

    Article  Google Scholar 

  • Lynch SFL, Batty LC, Byrne P (2014) Environmental risk of metal mining contaminated river bank sediment at redox-transitional zones. Minerals 4:52–73

    Article  Google Scholar 

  • Majerová L, Matys Grygar T, Elznicová J, Strnad L (2013) The differentiation between point and diffuse industrial pollution of the floodplain of the Ploučnice River, Czech Republic. Water Air Soil Pollut 224:1688

    Article  CAS  Google Scholar 

  • Martin JM, Meybeck M (1979) Elemental mass-balance of material carried by major world rivers. Mar Chem 7:173–206

    Article  CAS  Google Scholar 

  • Matys Grygar T (2016) Letter to Editor re Pavlović et al. (2015). Sci Total Environ 547:482–483

    Article  CAS  Google Scholar 

  • Matys Grygar T, Popelka J (2016) Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. J Geochem Explor 170:39–57

    Article  CAS  Google Scholar 

  • Matys Grygar T, Nováková T, Bábek O, Elznicová J, Vadinová N (2013) Robust assessment of moderate heavy metal contamination levels in floodplain sediments: a case study on the Jizera River, Czech Republic. Sci Total Environ 452–453:233–245

    Article  CAS  Google Scholar 

  • Matys Grygar T, Elznicová J, Bábek O, Hošek M, Engel Z, Kiss T (2014) Obtaining isochrones from pollution signals in a fluvial sediment record: a case study in a uranium-polluted floodplain of the Ploucnice River, Czech Republic. Appl Geochem 48:1–15

    Article  CAS  Google Scholar 

  • Matys Grygar T, Elznicová J, Tůmová S, Faměra M, Balogh M, Kiss T (2016a) Floodplain architecture of an actively meandering river (the Ploučnice River, the Czech Republic) as revealed by the distribution of pollution and electrical resistivity tomography. Geomorphology 254:41–56

    Article  Google Scholar 

  • Matys Grygar T, Elznicová J, Kiss T, Smith HG (2016b) Using sedimentary archives to reconstruct pollution history and sediment provenance: the Ohre River, Czech Republic. Catena 144:109–129

    Article  CAS  Google Scholar 

  • Matys Grygar T, Hošek M, Pacina J, Štojdl J, Bábek O, Sedláček J, Hron K, Talská R, Kříženecká S, Tolaszová J (2018) Changes in the geochemistry of fluvial sediments after dam construction (the Chrudimka River, the Czech Republic). Appl Geochem 98:94–108

    Article  CAS  Google Scholar 

  • Mokwe-Ozonzeadi N, Foster I, Valsami-Jones E, McEldowney S (2018) Trace metals distribution in the bed, bank and suspended sediment of the Ravensbourne River and its implication for sediment monitoring in an urban river. J Soils Sediments https://doi.org/10.1007/s11368-018-2078-0

  • Namour P, Schmitt L, Eschbach D, Moulin B, Fantino G, Bordes C, Breil P (2015) Stream pollution concentration in riffle geomorphic units (Yzeron basin, France). Sci Total Environ 532:80–90

    Article  CAS  Google Scholar 

  • Newman BK, Watling RJ (2007) Definition of baseline metal concentrations for assessing metal enrichment of sediment from the south-eastern cape coastline of South Africa. Water SA 33:675–691

    CAS  Google Scholar 

  • Nguyen TTH, Zhang WG, Li Z, Li J, Ge C, Liu JY, Bai X-X, Feng H, Yu L-Z (2016) Assessment of heavy metal pollution in Red River surface sediments, Vietnam. Mar Pollut Bull 113:513–519

    Article  CAS  Google Scholar 

  • Novakova T, Kotkova K, Elznicova J, Strnad L, Engel Z, Matys Grygar T (2015) Pollutant dispersal and stability in a severely polluted floodplain: a case study in the Litavka River, Czech Republic. J Geochem Explor 156:131–144

    Article  CAS  Google Scholar 

  • Pavlović P (2016) Response to Letter to the Editor by T. Matys Grygar, 2015 Assessment of the contamination of riparian soil and vegetation by trace metals—a Danube River case study. Sci Total Environ 569–570:1606–1607

    Article  CAS  Google Scholar 

  • Pavlowsky RT, Lecce SA, Owen MR, Martin DJ (2016) Legacy sediment, lead, and zinc storage in channel and floodplain deposits of the Big River, Old Lead Belt Mining District, Missouri, USA. Geomorphology 299:54–75

    Article  Google Scholar 

  • Perks MT, Warburton J, Bracken LJ, Reaney SM, Emery SB, Hirst S (2017) Use of spatially distributed time-integrated sediment sampling networks and distributed fine sediment modelling to inform catchment management. J Environ Manag 202:469–478

    Article  CAS  Google Scholar 

  • Phillips JM, Russell MA, Walling DE (2000) Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments. Hydrol Proced 14:2589–2602

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346:1–16

    Article  CAS  Google Scholar 

  • Reimann C, Arnoldussen A, Englmaier P, Filzmoser P, Finne TE, Garrett RG, Koller F, Nordgulen O (2007) Element concentrations and variations along a 120-km transect in southern Norway—anthropogenic vs. geogenic vs. biogenic element sources and cycles. Appl Geochem 22:851–871

    Article  CAS  Google Scholar 

  • Reimann C, de Caritat P, GEMAS Project Team, NGSA Project Team 2 (2012) New soil composition data for Europe and Australia: demonstrating comparability, identifying continental-scale processes and learning lessons for global geochemical mapping. Sci Total Environ 416:239–252

    Article  CAS  Google Scholar 

  • Reimann C, Filzmoser P, Hron K, Kynčlová P, Garrett R (2017) A new method for correlation analysis of compositional (environmental) data – a worked example. Sci Tot Environ 607–608:965–971

  • Reimann C, Fabian K, Birke M, Filzmoser P, Demetriades A, Negrel P, Oorts K, Matschullat J, de Caritat P, The GEMAS Project Team (2018) GEMAS: establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl Geochem 88:302–318

    Article  CAS  Google Scholar 

  • Rudnick R, Gao S (2003) Composition of the continental crust. The Crust. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, vol. 3. Elsevier–Pergamon, Oxford, pp 1–64

  • Schubert B, Heininger P, Keller M, Ricking M, Claus W (2012) Monitoring of contaminants in suspended particulate matter as an alternative to sediments. Trends Anal Chem 36:58–70

    Article  CAS  Google Scholar 

  • Schulze T, Ricking M, Schröter-Kermani C, Körner A, Denner H-D, Weinfurtner K, Winkler A, Pekdeger A (2007) The German Environmental Specimen Bank—sampling, processing, and archiving sediment and suspended particulate matter. J Soils Sediments 7:361–367

    Article  CAS  Google Scholar 

  • Shaheen SM, Frohne T, White JR, DeLaune RD, Rinklebe J (2017) Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (USA) and Nile (Egypt) River Deltas: a better understanding of biogeochemical processes for safe environmental management. J Environ Manag 186:131–140

    Article  CAS  Google Scholar 

  • Slezák J (2000) Historie těžby uranu v oblasti Stráže pod Ralskem v severočeské křídě a hydrogeologie (History of uranium production in the area of Stráž pod Ralskem (the North Bohemian Cretaceous basin) and hydrogeology), Sborník geologických věd. Hydrologie, inženýrská geologie 21:5–36 ISBN 80-7075-520-2

    Google Scholar 

  • Szava-Kovats RC (2008) Grain-size normalization as a tool to assess contamination in marine sediments: is the <63 μm fraction fine enough? Mar Pollut Bull 56:629–632

    Article  CAS  Google Scholar 

  • Tůmová Š, Matys Grygar T, Elznicová J, Hrubešová D (in print) Historické a současné znečištění sedimentů Panenského potoka Zn a Pb a jeho vliv na znečištění sedimentů Ploučnice (Historical and current contamination of sediments of the Panenský Creek by Pb and Zn and its influence on pollution of sediments of the Ploučnice River). Studia Oecologica

  • Uličný D, Laurin J, Čech S (2009) Controls on clastic sequence geometries in a shallow-marine, transtensional basin: the Bohemian Cretaceous Basin, Czech Republic. Sedimentology 56:1077–1114

    Article  Google Scholar 

  • Ulrych J, Dostal J, Adamovič J, Jelínek E, Špaček P, Hegner E, Balogh K (2011) Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos 123:133–144

    Article  CAS  Google Scholar 

  • Xu F, Liu YY, Zachara J, Bowden M, Kennedy D, Plymale AE, Liu CX (2017) Redox transformation and reductive immobilization of Cr(VI) in the Columbia River hyporheic zone sediments. J Hydrol 555:278–287

    Article  CAS  Google Scholar 

  • Yao QZ, Wang XJ, Jian HM, Chen HT, Yu ZG (2015) Characterization of the particle size fraction associated with heavy metals in suspended sediments of the Yellow River. Int J Environ Res Public Health 12:6725–6744

    Article  CAS  Google Scholar 

  • Young GM, Nesbitt HW (1998) Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. J Sediment Res 68:448–455

    Article  CAS  Google Scholar 

  • Zhou GH, Sun BB, Zeng DM, Wei HL, Liu ZY, Zhang BM (2014) Vertical distribution of trace elements in the sediment cores from major rivers in east China and its implication on geochemical background and anthropogenic effects. J Geochem Explor 139:53–67

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding essential for GIS work, field sampling and local aspects was provided by a student project from the UJEP in Ústí nad Labem (project number 44204 15 2076 01 led by ŠT), while most work on geochemistry aspects was supported by the Czech Science Foundation (project 15-00340S led by TMG and by institutional support by IIC Řež). The authors acknowledge technical help by Monika Maříková (IIC Řež), who assisted with laboratory sample processing and Jitka Elznicová (UJEP in Ústí nad Labem), who provided guidance and supported work by students (ŠT and DH).

Author information

Authors and Affiliations

Authors

Contributions

ŠT performed sediment sampling in the Panenský Creek and GIS work and searched for pollution sources in written archives. DH performed extensive qualified sampling in the Ploučnice River, the Robečský Creek and the Svitavka River. PV performed most laboratory analyses and assisted considerably in planning lab work and evaluation of geochemical datasets. MH contributed by result presentation. TMG coordinated the works and assembled the manuscript.

Corresponding author

Correspondence to Tomáš Matys Grygar.

Additional information

Responsible editor: Marcel van der Perk

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tůmová, Š., Hrubešová, D., Vorm, P. et al. Common flaws in the analysis of river sediments polluted by risk elements and how to avoid them: case study in the Ploučnice River system, Czech Republic. J Soils Sediments 19, 2020–2033 (2019). https://doi.org/10.1007/s11368-018-2215-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2215-9

Keywords

Navigation