Skip to main content
Log in

Characterization of contamination levels of heavy metals in agricultural soils using geochemical baseline concentrations

  • Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

It is currently very difficult to accurately evaluate the soil contamination by heavy metals (HMs) attributed to the unavailability of local geochemical background values (LGBVs). This study was performed to establish the geochemical baseline concentrations (GBCs), as an alternative for LGBVs to use for HM pollution assessment of agricultural soil.

Materials and methods

GBCs of the HMs selected were determined using the cumulative frequency distribution curves (CFDCs). GBCs were then used to pursue the HM soil pollution and associated ecological risks, via calculation of geo-accumulation indices (Igeo), pollution load indices (PLI), as well as potential ecological risk indices (RI).

Results and discussion

As to the soil investigated, the GBCs of Ni, Zn, Pb, and Cr were 29.34 mg/kg, 45.54 mg/kg, 21.81 mg/kg, and 33.65 mg/kg, respectively. Igeo values ranged from − 4.58 to 0.33 (Ni), from − 2.46 to 2.14 (Zn), from − 5.32 to 0.77 (Pb), and from − 3.83 to 0.96 (Cr), suggesting that the region was not polluted by these HMs. PLI values ranged from 0.08 to 2.45 with an average of 1.02. 49.6% of soil samples had the PLI values > 1.0, indicating that some of the soil may be moderately contaminated by HMs. The RI values of selected HMs were < 150, indicating a low potential ecological risk. Principal component analysis (PCA) implied Zn, Pb, and Cr were mainly sourced from parent (geological) materials, as well as agricultural activities, atmospheric deposition, etc., depending on the element.

Conclusions

The present study illustrates the necessity of the characterization of GBCs at a regional scale, allowing for more accurate assessment of soil contamination by HMs. We hope that this will eventually lead to further development of better environmental management practices for agricultural soil polluted by HMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Burges A, Epelde L, Garbisu C (2015) Impact of repeated single-metal and multi-metal pollution events on soil quality. Chemosphere 120:8–15

    Article  CAS  Google Scholar 

  • Cai L, Xu Z, Bao P et al (2015) Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. J Environ Manag 148:189–195

    CAS  Google Scholar 

  • Chabukdhara M, Nema AK (2012) Assessment of heavy metal contamination in hindon river sediments: a chemometric and geochemical approach. Chemosphere 87(8):945–953

    Article  CAS  Google Scholar 

  • Chen F, Pu LJ (2007) Relationship between heavy metals and basic properties of agricultural soils in Kunshan County. Soils 39:291–296

    CAS  Google Scholar 

  • Chen HF, Li Y, Wu HX, Li F (2013) Characteristics and risk assessment of heavy metals pollution of farmland soils relative to type of land use. J Ecol Rural Environ 29:164–169

    CAS  Google Scholar 

  • Chen P, Wang Y, Zhang M (2014) Investigation and analysis of heavy metal pollution in the agricultural soils of Pingdingshan. Heilongjiang Sci Technol Inform 44(12):18–19

    Google Scholar 

  • Chen Y, Zhou J, Xing L, Feng Y, Hang X, Wang H (2015) Characteristics of heavy metals and phosphorus in farmland of Hailun City, Heilongjiang Province. Soils 47(5):965–972

    CAS  Google Scholar 

  • Davis AP, Shokouhian M, Ni S (2001) Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 44(5):997–1009

    Article  CAS  Google Scholar 

  • Ding H (2018) Study on the geochemical baseline value of heavy metals in farmland of Jinchang Suburb. Environ Res Monit 31(2):1–5 (in Chinese)

    Google Scholar 

  • Dou L, Zhou Y, Ma J, Li Y, Cheng Q, Xie S et al (2008) Using multivariate statistical and geostatistical methods to identify spatial variability of trace elements in agricultural soils in Dongguan City, Guangdong, China. J China Univ Geosci 19(4):343–353

    Article  CAS  Google Scholar 

  • Du P, Xie Y, Wang S, Zhao H, Zhang Z, Wu B, Li F (2015) Potential sources of and ecological risks from heavy metals in agricultural soils, Daye City, China. Environ Sci Pollut Res 22(5):3498–3507

    Article  CAS  Google Scholar 

  • Ekere N, Yakubu N, Ihedioha J (2017) Ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbons in sediments of rivers Niger and Benue confluence, Lokoja, Central Nigeria. Environ Sci Pollut Res 24(23):18966–18978

    Article  CAS  Google Scholar 

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and gis-based approach to identify heavy metal sources in soils. Environ Pollut 114(3):313–324

    Article  CAS  Google Scholar 

  • Fan K, Wei C, Yang X (2014) Geochemical baseline of heavy metals in the soils of Qiaokou Town, Changsha City and its application. Acta Sci Circumst 32(12):3066–3083

    Google Scholar 

  • Fan Y, Zhu T, Li M, He J, Huang R (2017) Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in Central China. J Health Eng 2017:1–9. https://doi.org/10.1155/2017/4124302

    Article  Google Scholar 

  • Francouría A, Lópezmateo C, Roca E, Fernándezmarcos ML (2009) Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J Hazard Mater 165(1):1008–1015

    Article  CAS  Google Scholar 

  • Gałuszka A (2007) A review of geochemical background concepts and an example using data from Poland. Environ Geol 52(5):861–870

    Article  Google Scholar 

  • Garnett T (2014) Three perspectives on sustainable food security: efficiency, demand restraint, food system transformation. What role for life cycle assessment? J Clean Prod 73:10–18

    Article  Google Scholar 

  • Gong WH, Wang ZQ, Wei YU, Gao Y, Wang HG (2014) Content and evaluation of heavy metals in farmland soil of Nantong. Heilongjiang Agric Sci 10:34–39

    Google Scholar 

  • Guo G, Wu F, Xie F, Zhang R (2012) Spatial distribution and pollution assessment of heavy metals in urban soils from Southwest China. J Environ Sci 24:410–418

    Article  CAS  Google Scholar 

  • Han YM, Du PX, Cao JJ, Posmentier ES (2006) Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ 355:176–186

    Article  CAS  Google Scholar 

  • He K, Sun Z, Hu Y, Zeng X, Yu Z, Cheng H (2017) Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations. Environ Sci Pollut Res 24(10):1–12

    CAS  Google Scholar 

  • Huang SS, Liao QL, Hua M, Wu XM, Bi KS, Yan CY, Chen B, Zhang XY (2007) Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong District, Jiangsu Province, China. Chemosphere 67(11):2148–2155

    Article  CAS  Google Scholar 

  • Jarva J, Ottesen R, Tarvainen T (2014) Geochemical studies on urban soil from two sampling depths in Tampere Central Region, Finland. Environ Earth Sci 71(11):4783–4799

    Article  CAS  Google Scholar 

  • Karim Z, Qureshi BA, Mumtaz M (2015) Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecol Indic 48:358–364

    Article  CAS  Google Scholar 

  • Ke X, Gui S, Huang H, Zhang H, Wang C, Guo W (2017) Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere 175:473–481

    Article  CAS  Google Scholar 

  • Lawal NS, Agbo O, Usman A (2017) Health risk assessment of heavy metals in soil, irrigation water and vegetables grown around Kubanni River, Nigeria. J Phys Sci 28(1):49–59

    Article  Google Scholar 

  • Levitan D, Schreiber M, Seal II R, Bodnar R, Aylor Jr JG (2014) Developing protocols for geochemical baseline studies: an example from the Coles Hill uranium deposit, Virginia, USA. Appl Geoche 43:88–100

  • Li C (2010) Heavy metal from farmland of Shenyang. Environ Prot Recy Ecom 30(9):56–58

    CAS  Google Scholar 

  • Li L, Chen W (2014) An evaluation of soil lead and cadmium content in rural areas of Bazhong City. J Henan Norm U (Nat Sci Edit) 42(4):91–95

    CAS  Google Scholar 

  • Li X, Chen X (2016) Characteristics of heavy metals pollution and health risk assessment in farmland soil of Zhuzhou. J Guilin Univ Technol 36(3):545–549

    Google Scholar 

  • Li Y, Li J (2012) Research on soil environmental quality of Jiamusi City. Journal of Environmental Management College of China 22(6):15–18

  • Li Y, Gou X, Wang G, Zhang Q, Su Q, Xiao G (2008) Heavy metal contamination and source in arid agricultural soils in Central Gansu Province, China. J Environ Sci-China 20:607–612

    Article  CAS  Google Scholar 

  • Li J, Lu Y, Yin W, Gan H, Zhang C, Deng X, Lian J (2009) Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangzhou, China. Environ Monit Assess 153(1):365–375

    Article  CAS  Google Scholar 

  • Li R, Hao Y, Li G, Jiang Y, Zhang H, Han X (2011) Characteristics and sources analysis of soil heavy metal pollution in Taian City, Shandong, China. J Agro-Environ Sci 30(10):2012–2017

    CAS  Google Scholar 

  • Li A, Shi Z, Ni S (2012) Geochemical baseline and pollution evaluation of heavy metals in soils of Longtan Town, Zigong City. Comput Tech Geophy Geochem Explor 34(4):470–474

    CAS  Google Scholar 

  • Li H, Liu Y, Zhou Y, Zhang J, Mao Q, Yang Y, Huang H, Liu Z, Peng Q, Luo L (2018) Effects of red mud based passivator on the transformation of Cd fraction in acidic Cd-polluted paddy soil and Cd absorption in rice. Sci Total Environ 640-641:736–745

    Article  CAS  Google Scholar 

  • Liao J, Ru X, Xie B, Zhang W, Wu H, Wu C, Wei C (2017) Multi-phase distribution and comprehensive ecological risk assessment of heavy metal pollutants in a river affected by acid mine drainage. Ecotox Environ Safe 141:75–84

    Article  CAS  Google Scholar 

  • Liu WH, Zhao JZ, Ouyang ZY, Söderlund L, Liu GH (2005) Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ Int 31(6):805–812

    Article  CAS  Google Scholar 

  • Liu C, Shang Y, Yin G (2006a) Primary study on heavy metals pollution in farm soil of Chengdu City. Trace Elem Sci Guangdong 13(3):41–45

    CAS  Google Scholar 

  • Liu H, Han B, Hao D (2006b) Evaluation to heavy metals pollution in agricultural soils in northern suburb of Xuzhou City. Chin J Eco-Agr 14:159–161

    CAS  Google Scholar 

  • Liu Q, Wang J, Shi Y, Zhang Y, Wang Q (2006c) Heavy metal pollution in cropland soil in Cixi City of Zhejiang Province. J Agro-environ Sci 26(2):639–644

    Google Scholar 

  • Liu WX, Shen LF, Liu JW, Wang YW, Li SR (2007) Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou City, People’s Republic of China. Bull Environ Contam Toxicol 79(2):209–213

    Article  CAS  Google Scholar 

  • Liu X, Song Q, Tang Y et al (2013) Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Sci Total Environ 463:530–540

    Article  CAS  Google Scholar 

  • Liu Y, Wang H, Li XT, Li JC (2015) Heavy metal contamination of agricultural soils in Taiyuan, China. Pedosphere 25(6):901–909

    Article  Google Scholar 

  • Lu A, Wang J, Qin X, Wang K, Han P, Zhang S (2012) Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Sci Total Environ 425(1):66–74

    Article  CAS  Google Scholar 

  • Lu X, Kang Z, Gu A, Zhang Y (2018) Environmental geochemical baseline of soil metallic elements in agricultural soil. Adv Geosci 8(4):811–819

    Article  Google Scholar 

  • Marrugo-Negrete J, Pinedo-Hernández J, Díez S (2017) Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ Res 154:380–388

    Article  CAS  Google Scholar 

  • Matschullat J, Ottenstein R, Reimann C (2000) Geochemical background—can we calculate it? Environ Geol 39(9):990–1000

    Article  CAS  Google Scholar 

  • Meng F, Liu M, Cui J (2008) Spatial distribution of heavy metals in agricultural soils of Shanghai. Acta Pedol Sin 45(4):725–728

    Google Scholar 

  • Micó C, Peris M, Recatalá L, Sánchez J (2007) Baseline values for heavy metals in agricultural soils in an european mediterranean region. Sci Total Environ 378(1–2):13–17

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Fernández JM, Puschenreiter M, Williams PN, Plaza C (2016) Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: impact of biochar, organic and mineral fertilizers. Agric Ecosyst Environ 219:171–178

    Article  CAS  Google Scholar 

  • Niu S, Gao L, Zhao J (2015) Risk analysis of metals in soil from a restored coal mining area. Bull Environ Contam Toxicol 95(2):183–187

    Article  CAS  Google Scholar 

  • Qiu L, Liu M, Liu Y, Chen H, Lan S, Li Q (2017) Investigation and analysis of heavy metal pollution in the soil of vegetable cropland in Jiangmen. Guangdong Chem Industry 44(12):18–19

    Google Scholar 

  • Rodríguez JA, Nanos N, Grau JM, Gil L, López-Arias M (2008) Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere 70(6):1085–1096

    Article  CAS  Google Scholar 

  • Shao D, Zhan Y, Zhou W, Zhu L (2016) Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta region: field survey and meta-analysis. Environ Pollut 219:329–336

    Article  CAS  Google Scholar 

  • Shen JW, Xu JK, Liu JG, Wang MX, Chai YH (2010) Study on heavy metal pollution in agricultural soils of Suzhou. Environ Sci Technol (China) 33(12):87–93

    Google Scholar 

  • Singh A, Prasad SM (2015) Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int J Environ Sci Technol 12(1):353–366

    Article  CAS  Google Scholar 

  • Smith WH (1976) Lead contamination of the roadside ecosystem. J Air Waste Manage Assoc 26(8):753–766

    CAS  Google Scholar 

  • Song Z (2008) Farmland soil heavy metal pollution and its bioremediation countermeasures at Zhangzhou. Fujian Sci Technol Tropical Crops 33(3):34–36

    Google Scholar 

  • Sun C, Liu J, Wang Y, Sun L, Yu H (2013) Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere 92(5):517–523

    Article  CAS  Google Scholar 

  • Suresh G, Sutharsan P, Ramasamy V, Venkatachalapathy R (2012) Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotox Environ Safe 84:117–124

  • Teng Y, Ni S, Tuo X, Zhang C, Ma Y (2002) Geochemical baseline and trace metal pollution of soil in Panzhihua mining area. Chin J Geochem 21(3):274–281

    Article  CAS  Google Scholar 

  • Teng Y, Ni S, Wang J, Niu L (2009) Geochemical baseline of trace elements in the sediment in Dexing area, South China. Environ Geol 57(7):1649–1660

    Article  CAS  Google Scholar 

  • Tian K, Huang B, Xing Z, Hu W (2017) Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecol Indic 72:510–520

    Article  CAS  Google Scholar 

  • Tilman D, Clark M (2015) Food, agriculture & the environment: can we feed the world & save the earth? Daedalus 144(4):8–23

    Article  Google Scholar 

  • de Vries FT, Thébault E, Liiri M et al (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci 110(35):14296–14301

    Article  Google Scholar 

  • Wang B, Wang Y, Li D, Gao Y, Mao R (2006) Spatial variability of farmland heavy metals contents in Qianan City. J Appl Ecol 17(8):1495–1500

    Google Scholar 

  • Wei C (2009) Study on the conditions of heavy metal contamination of basic farmland soil of Huangshi City. Environ Sci Manag 34(2):80–83

    Google Scholar 

  • Wei C, Wen H (2012) Geochemical baselines of heavy metals in the sediments of two large freshwater lakes in China: implications for contamination character and history. Environ Geochem Health 34:737–748

    Article  CAS  Google Scholar 

  • Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani Province, Thailand. Environ Geochem Health 36(1):169–182

    Article  CAS  Google Scholar 

  • Wu H (2016) Geochemical baseline concentrations and risk assessment of heavy metals in agricultural soils of Qintan District, Gugang City. South Land Resources 10:34–36 (in Chinese)

    Google Scholar 

  • Wu F, Chen L, Yi T, Yang Z, Chen Y (2018) Determination of heavy metal baseline values and analysis of its accumulation characteristics in agricultural land in Chongqing. Environ Sci 11:1–16 (in Chinese)

    Google Scholar 

  • Xiao Q, Zong Y, Lu S (2015) Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotox Environ Safe 120:377–385

    Article  CAS  Google Scholar 

  • Xu L, Li Y, Su Q, Wu J, Xiong X, Song B, Zheng GD, Chen YC (2007) Contents and spatial distribution patterns of heavy metals in ffarmland soils of Fuxin City. Chin J Appl Ecol 18(7):1510–1517

    CAS  Google Scholar 

  • Yang P, Mao R, Shao H, Gao Y (2009) The spatial variability of heavy metal distribution in the suburban farmland of Taihang Piedmont Plain, China. CR Biol 332(6):558–566

    Article  CAS  Google Scholar 

  • Yang Y, Christakos G, Guo M, Xiao L, Huang W (2017) Space-time quantitative source apportionment of soil heavy metal concentration increments. Environ Pollut 223:560–566

    Article  CAS  Google Scholar 

  • Yu L, Cheng J, Zhan J, Jiang A (2016) Environmental quality and sources of heavy metals in the topsoil based on multivariate statistical analyses: a case study in Laiwu City, Shandong Province, China. Nat Hazards 81(3):1435–1445

    Article  Google Scholar 

  • Zakir H, Arafat M, Isl M (2017) Assessment of metallic pollution along with geochemical baseline of soils at Barapukuria open coal mine area in Dinajpur, Bangladesh. Asian J Water Environ Pollut 14(4):77–88

    Article  Google Scholar 

  • Zha X, Zhang W, Yi H, Wang J, Muhetaer T, Jia M (2016) Research on characteristics of agricultural soil heavy metal pollution evaluation in Kashgar. Hubei Agr Sci 55(15):3891–3896

    Google Scholar 

  • Zhang S, Yang D, Li F, Chen H, Bao Z, Huang B, Zou D, Yang J (2014) Determination of regional soil geochemical baselines for trace metals with principal component regression: a case study in the Jianghan Plain, China. Appl Geochem 48:193–206

    Article  CAS  Google Scholar 

  • Zhao X (2014) Investigation of heavy metals pollution of farmland soil in Xiangyang City, Hubei Province. J Green Sci Technol 2:207–209

    Google Scholar 

  • Zhao Y, Shi X, Huang B et al (2007a) Spatial distribution of heavy metals in agricultural soils of an industry-based peri-urban area in Wuxi, China. Pedosphere 17:44–51

    Article  Google Scholar 

  • Zhao Z, Rate AW, Tang S, Bi H (2007b) Characteristics of heavy metal distribution in agricultural soils of Hainan Island and its environment significances. J Agro-Environ Sci 27(1):182–187

    Google Scholar 

  • Zheng G (2008) Investigation and assessment on heavy metal pollution of farming soil in the Jinghe River Basin. Arid Zone Res 25:627–630

    Google Scholar 

  • Zhou J, Wang F, Lou Y, Jin S (2016) Investigation on heavy metal pollution in agricultural soils of Ningbo. J Zhejiang Agr Sci 57(8):1301–1303

    Google Scholar 

  • Zhou Y, Liu X, Xiang Y et al (2017) Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Bioresour Technol 245(Pt A):266–273

    CAS  Google Scholar 

  • Zhou Y, He Y, Xiang Y, Meng S, Liu X, Yu J, Yang J, Zhang J, Qin P, Luo L (2019) Single and simultaneous adsorption of pefloxacin and Cu(II) ions from aqueous solutions by oxidized multiwalled carbon nanotube. Sci Total Environ 646:29–36

    Article  CAS  Google Scholar 

  • Zhu X, Yang Z (2014) Analysis and prevention of heavy metal pollution in farmland soil in Zhangye. Environ Stud Monit 27(4):9–12

    Google Scholar 

Download references

Acknowledgements

The farmers provided us with the basic information of studied area and issued the permission to conduct the sampling in the land. The authors are grateful for the support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siping Niu or Liangmin Gao.

Additional information

Responsible editor: Daniel C. W. Tsang

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, S., Gao, L. & Wang, X. Characterization of contamination levels of heavy metals in agricultural soils using geochemical baseline concentrations. J Soils Sediments 19, 1697–1707 (2019). https://doi.org/10.1007/s11368-018-2190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2190-1

Keywords

Navigation