Skip to main content

Multiple-Phase Evaluation of Copper Geochemistry

  • Chapter
Heavy Metal Contamination of Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 44))

Abstract

Geochemical processes involve reactions which mediate and control the dissolution/release and (re)formation/sorption of mineral elements at geological as well as soil levels. The role of trace elements, copper among others, in soil chemical changes is still a matter of detailed studies. Primary copper-bearing minerals and their secondary weathering stage compounds should potentially release Cu via CO2 injection into deep geological structures or mining activities. The latter ones initiate slow or intensive spread of Cu compounds into the environment.

Multiple-phase Cu evaluation was additionally detailed in a case study of natural (uncontaminated) and anthropogenic (contaminated) soil Cu concentrations. Langmuir-based sorption density (SD) models and surface charge density (SCD) were also used in the geochemical Cu processes assessment. The simplified Elovich model showed a good data fit, which is suggestive of bulk and intraparticle diffusion processes. Copper in contaminated and uncontaminated soils was characterised by a negative hysteresis indicative of relatively high copper desorbability. This process should be strengthened under acidic conditions and high copper contamination. Energies of activation for the adsorption (E aa) process were generally lower for uncontaminated as compared to contaminated soils. Copper required low energies to desorb, and the activation energy for desorption (E ad) values did not exceed 15 kJ mol−1. Such low desorption energies indicate that copper is disposed to enhance mobility. Geochemical aspects were substantially outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (1986) Trace elements in the environment. Springer-Verlag, New York, p 553

    Google Scholar 

  • Ainstworth CC, Pilon LJ, Gassman PL, Van Der Sluys W (1994) Cobalt, cadmium and lead sorption to hydrous iron oxide: residence time effect. Soil Sci Soc Am J 58:1615–1623

    Google Scholar 

  • Allen JA, Scaife PH (1966) The Elovich equation and chemisorption kinetics. Aust J Chem 19:2015–2023

    CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie Academic & Professional, London, p 360

    Google Scholar 

  • Amacher MC (1991) Methods of obtaining and analysing kinetic data. In: Sparks DL, Suarez DL (eds) Rates of soil chemical processes. SSSA, Madison WI, pp 19–59, Spec. Publ. Nr 27. Soil Sci. Soc. Am

    Google Scholar 

  • Amacher MC, Kotuby-Amacher J, Selim HM, Iskandar IK (1986) Retention and release of metals by soils. Evaluation of several models. Geoderma 38:131–154

    CAS  Google Scholar 

  • Aringhieri R, Carrai P, Petruzzelli G (1985) Kinetics of Cu2+ and Cd2+ adsorption by an Italian soil. Soil Sci 139(3):197–204

    CAS  Google Scholar 

  • Baker DE (1990) Copper. In: Alloway BJ (ed) Heavy metals in soils. Halsted, Blackie, NY, USA, pp 151–176

    Google Scholar 

  • Barriuso E, Laird DA, Koskinen CW, Dowdy RH (1994) Atrazine desorption from smectites. Soil Sci Soc Am J 58:1632–1638

    CAS  Google Scholar 

  • Barrow NJ (1998) The effect of time and temperature on the sorption of cadmium, zinc, cobalt and nickel by a soil. Aust J Soil Res 36:941–950

    CAS  Google Scholar 

  • Barrow NJ (1999) The four laws of soil chemistry: the Leeper lecture 1998. Aust J Soil Res 37:787–829

    CAS  Google Scholar 

  • Barrow NJ, Whelan BW (1989) Testing a mechanistic model. VIII. The effect of time and temperature of incubation on the sorption and subsequent desorption of selenite and selenate by a soil. J Soil Sci 40:29–37

    CAS  Google Scholar 

  • Basta NT, Tabatabai MA (1992) Effect of cropping systems on adsorption of metals by soils: II. Effect of pH. Soil Sci 153:195–204

    CAS  Google Scholar 

  • Benjamin MM, Leckie JO (1981) Conceptual model for metal-ligand-surface interactions during adsorption. Environ Sci Tech 15:1050–1056

    CAS  Google Scholar 

  • Boehringer IM (1980) Echanges cationique avec des métaux lourds sur la tourbe acide. Thèse de Doctorat Ecole Polytechnique, Fédérale, Zurich; No. 6700. p 131

    Google Scholar 

  • Bowden JW, Posner AM, Quirk JP (1977) Ionic adsorption on variable charge mineral surfaces. Theoretical-charge development and titration curves. Aust J Soil Res 15:121–136

    CAS  Google Scholar 

  • Brümmer GW, Gerth J, Herms U (1986) Heavy metal species, mobility and availability in soils. Z Pflanzenernehr Bodenk 149:382–398

    Google Scholar 

  • Bunzl K, Schmidt W, Sansoni B (1976) Kinetics of ion exchange in soil organic matter. IV. Adsorption and desorption of Pb2+, Cu2+, Cd2+, Zn2+ and Ca2+ by peat. J Soil Sci 27:32–41

    CAS  Google Scholar 

  • Carter DL, Mortland MM, Kemper WD (1986) Specific surface. In: Klute A (ed) Methods of soils analysis, part I—physical and mineralogical methods, 2nd edn. Am Soc Agron, Madison, WI, pp 413–423

    Google Scholar 

  • Cavallaro N, McBride MB (1978) Copper and cadmium adsorption characteristics of selected acid and calcareous soils. Soil Sci Soc Am J 42:550–556

    CAS  Google Scholar 

  • Cavallaro N, McBride MB (1980) Activities of Cu2+ and Cd2+ in soil solutions as affected by pH. Soil Sci Soc Am J 44:729–732

    CAS  Google Scholar 

  • Chien SH, Clayton WR (1980) Application of the Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J 44:265–268

    CAS  Google Scholar 

  • Chudziński B (1995) Assessment of heavy metals phytotoxicity on the basis of their availability, yields and quality of cereals. PhD Thesis, IOR Poznan (Poland). 166 p. (in Polish).

    Google Scholar 

  • Cox PA (1989) The elements. Their origin, abundance and distribution. Oxford University Press, Oxford, p. 207

    Google Scholar 

  • Dang YP, Dalal RC, Edwards DG, Tiller KG (1994) Kinetics of Zinc desorption from vertisols. Soil Sci Soc Am J 58:1392–1399

    CAS  Google Scholar 

  • Davis JA, Leckie JO (1978) Surface ionization and complexation at the oxide-water interface. II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J Colloid Interface Sci 67:90–107

    CAS  Google Scholar 

  • de Jong E (1999) Comparison of three methods of measuring surface area of soils. Can J Soil Sci 79:345–351

    Google Scholar 

  • Diatta JB (2002) Evaluation of adsorption parameters and charge densities of some selected soils: application to lead. EJPAU Environ Dev 5(Issue 2). http://www.ejpau.media.pl/series/volume5/issue2/environment/art-03.html

  • Diatta JB (2008) Mutual Cu, Fe and Mn solubility control under differentiated soil moisture status. J Elementol 13(4):473–489

    Google Scholar 

  • Diatta JB, Kociałkowski WZ, Grzebisz W (2000) Copper distribution and quantity-intensity parameters of highly contaminated soils in the vicinity of a copper plant. Polish J Environ Stud 9(5):355–361

    CAS  Google Scholar 

  • Diatta JB, Kociałkowski WZ, Grzebisz W (2003) Lead and zinc partition coefficients of selected soils evaluated by Langmuir, Freundlich and linear isotherms. Commun Soil Sci Plant Anal 34(17 & 18):2419–2439

    CAS  Google Scholar 

  • Diatta JB, Grzebisz W, Wiatrowska K (2004) Competitivity, selectivity, and heavy metals-induced alkaline cation displacement in soils. Soil Sci Plant Nutr 50(6):899–908

    CAS  Google Scholar 

  • Diatta JB, Komisarek J, Wiatrowska K (2012) Evaluation of heavy metals competitive sorption and potential mobility on the basis of Cu/Cd and Zn/Pb binary systems. Fresenius Environ Bullet 21(5):1105–1109

    CAS  Google Scholar 

  • Drobek L, Bukowska M, Borecki T (2008) Chemical aspects of CO2 sequestration in deep geological structures. Gospod Surowcami Min 24(3/1):425–438

    CAS  Google Scholar 

  • Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B (2001) Adsorption and migration of heavy metals in soil. Polish J Environ Stud 10(1):1–10

    CAS  Google Scholar 

  • Duffus JH (2002) Heavy metals—a meaningless term. IUPAC technical report. Pure Appl Chem 74(5):793–807

    CAS  Google Scholar 

  • Elkhatib EA, Elshebiny GM, Balba MA (1992) Comparison of four equations to describe the kinetics of lead desorption from soils. Z Pflanzenernahr Bodenk 155:285–291

    CAS  Google Scholar 

  • Elkhatib EA, Elshebiny GM, Elsubruiti GM, Balba MA (1993) Thermodynamics of lead sorption and desorption in soils. Z Pflanzenernahr Bodenk 156:461–465

    CAS  Google Scholar 

  • El-Sayed MH, Burau RG, Babcock KL (1970) Thermodynamics of copper (II)—calcium exchange on bentonite clay. Soil Sci Soc Am Proc 34:397–400

    CAS  Google Scholar 

  • Elzinger EJ, van Grinsven MJ, Swartjes FA (1999) General of Freundlich isotherms for cadmium, copper and zinc in soils. Eur J Soil Sci 50:139–149

    Google Scholar 

  • Eriksson JE (1988) The effects of clay, organic matter and time on adsorption and plant uptake of cadmium added to the soil. Water Air Soil Pollut 40:359–373

    CAS  Google Scholar 

  • Evans RL, Jurinak JJ (1976) Kinetics of phosphate release from a desert soil. Soil Sci 121:205–211

    CAS  Google Scholar 

  • Forbes EA, Posner AM, Quirk JP (1976) The specific adsorption of divalent Cd, Co, Cu, Pb and Zn on goethite. J Soil Sci 27:154–166

    CAS  Google Scholar 

  • Forrester SD, Giles CH (1971) From manure heaps to monolayers: the earliest development of solute-solid adsorption studies. Chem Ind, 1314–1321

    Google Scholar 

  • Freedman B, Hutchison TC (1980) Pollutant inputs from the atmosphere and accumulations in soils and vegetation near a nickel-copper smelter at Sudbury, Ontario. Canada Can J Bot 58:108–132

    CAS  Google Scholar 

  • Fripiat JJ, Cloos P, Poncelet A (1965) Comparison entre les propriétés d’échange de la montmorillonite et d’une résine vis-à-vis des cations alcalins et alcalino-terreux. I. Réversibilité des processus. Bull Soc Chim Fr, 208–215

    Google Scholar 

  • Gaines GL, Thomas HC (1953) Adsorption studies on clay minerals. II. A formulation of a thermodynamics of exchange-adsorption. J Chem Phys 21:714–718

    CAS  Google Scholar 

  • Gapon EN (1933) Theory of exchange adsorption in soils. J Gen Chem (USSR) 3(2):144–152

    CAS  Google Scholar 

  • Geiger G, Federer P, Sticher H (1993) Reclamation of heavy metal contaminated soils—field studies and germination experiments. J Environ Qual 22:201–207

    CAS  Google Scholar 

  • Geochemical Atlas of Legnica-Głogów Copper District (1999) State Geological Institute. Scale 1:250 000. Warszawa (in Polish)

    Google Scholar 

  • Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurements of specific surface areas of solids. J Chem Soc 786:3973–3993

    Google Scholar 

  • Gregg SJ, Sing KSW (1967) Adsorption, surface area and porosity. Academic, London, UK, pp 44–50

    Google Scholar 

  • Grzebisz W, Chudziński B (1996) Crop aided biological remediation of soils contaminated by a copper smelter. In: Gărban Z, Drăgan P (eds) Proceedings of second international symposium on metal elements in environment, medicine and biology, Publishing House “Eurobit” Timişoara—Romania, 1st edition. 1996. ISBN 973-9336-15-9, pp 63–72

    Google Scholar 

  • Grzebisz W, Kociałkowski WZ, Chudzinski B (1997) Copper geochemistry and availability in cultivated soils contaminated by a copper smelter. J Geochem Explor 58:301–307

    CAS  Google Scholar 

  • Harter RD (1984) Curve-fit errors in Langmuir adsorption maxima. Soil Sci Soc Am J 48:749–752

    Google Scholar 

  • Harter R, Lehmann R (1983) Use of kinetics for the study of exchange reactions in soils. Soil Sci Soc Am J 47:666–669

    CAS  Google Scholar 

  • Helios-Rybicka E, Jędrzejczyk B (1995) Preliminary studies on mobilisation of copper and lead from contaminated soils and readsorption on competing sorbents. Appl Clay Sci 10(3):259–268

    CAS  Google Scholar 

  • Hendershot WH, Duquette M (1986) A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci Soc Am J 50:605–608

    Google Scholar 

  • Hodgson JF, Lindsay WL, Trierweiler JF (1966) Micronutrient cation complexing in soil solution. II. Complexing of zinc and copper in displacing solution from calcareous soils. Soil Sci Am Proc 30:723–726

    CAS  Google Scholar 

  • Huijgen WJJ, Comans RNJ, Witkamp GJ (2006) Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem Eng Sci 61:4242–4251

    CAS  Google Scholar 

  • Ibsen KH, Jacobsen FL (1996) The Linde Structure, Denmark an example of a CO2-depository with a secondary chalk cap rock. Energ Convers Manag 37(6–8):1161–1166

    Google Scholar 

  • International Standard (1995) Soil quality—extraction of trace elements soluble in aqua regia, Geneva ISO11466

    Google Scholar 

  • Izotermy© (1993) Wersje 1.0; 1.1; 1.2. Biuro Projektów Informatyki, A. Ratajczak, Poznań

    Google Scholar 

  • Jopony M, Young SD (1994) The solid-solution equilibria of lead and cadmium in polluted soils. Eur J Soil Sci 45:59–70

    CAS  Google Scholar 

  • Kabata-Pendias A (1978) The impact of copper mining and industrial activity of Lower Silesia on the chemical composition of plants. Final report—IUNG, p 173

    Google Scholar 

  • Kabata-Pendias A (1993) Behavioural properties of trace metals in soils. Appl Geochem Suppl Issue 2, 3–9

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca Raton, p 365

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1999) Biogeochemia pierwiastków śladowych. Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

  • Kabata-Pendias A, Motowicka-Terelak T, Piotrowska M, Terelak H, Witek T (1993) Ocena stopnia zanieczyszczenia gleb i roślin metalami ciężkimi i siarką. IUNG-Puławy, str. 20

    Google Scholar 

  • Kinniburgh DG (1986) General purpose adsorption isotherms. Environ Sci Technol 20:895–904

    CAS  PubMed  Google Scholar 

  • Kondracki J (1978) Geografia fizyczna Polski. PWN, Wyd. II, Warszawa, p 463

    Google Scholar 

  • Kociałkowski WZ, Diatta JB, Grzebisz W (1999) Assessment of lead sorption by acid agroforest soils. Pol J Environ Stud 8(6):403–408

    Google Scholar 

  • Konstantynowicz E (1979) Geologia surowców mineralnych. Tom 2. Złoża rud metali, Uniwersytet Śląski, Katowice

    Google Scholar 

  • Lai TM, Mortland MM (1968) Cationic diffusion in clay minerals: I. Homogeneous and heterogeneous systems. Soil Sci Soc Am Proc 32:56–61

    CAS  Google Scholar 

  • Laird DA, Barriuso E, Dowdy RH, Koskinen WC (1992) Adsorption of atrazine on smectites. Soil Sci Soc Am J 56:62–67

    CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York, p. 449

    Google Scholar 

  • Liu C, Huang PM (2000) Kinetics of phosphate adsorption on iron oxide formed under the influence of citrate. Can J Soil Sci 80:445–454

    CAS  Google Scholar 

  • Loeppert RH, Suarez DL (1996) Carbonate and gypsum. In: Bartels JM et al (eds) Methods of soil analysis: part 3. Chemical methods, vol 5, 3rd edn. ASA and SSSA, Madison, WI, pp 437–474

    Google Scholar 

  • Logan TJ (1990) Chemical degradation of soil. Adv Soil Sci 11:187–219

    Google Scholar 

  • Logan EM, Pulford ID, Cook GT, McKenzie AB (1997) Complexation of Cu2+ and Pb2+ by peat and humic acid. Eur J Soil Sci 48:685–696

    CAS  Google Scholar 

  • Low WJD (1960) Kinetics of chemisorption of gases on solids. Chem Rev 60:267–312

    CAS  Google Scholar 

  • Maqueda C, Undabeytia T, Morrillo E (1998) Retention and release of copper on montmorillonite as affected by the presence of a pesticide. J Agric Food Chem 46(3):1200–1204

    CAS  Google Scholar 

  • Markert B, Friese K (eds) (2000) Trace elements. Their distribution and effects in the environment. Elsevier, Amsterdam

    Google Scholar 

  • Markert B, Breure A, Zechmeister H (eds) (2003) Bioindicators & biomonitors. Principles, concepts and applications. Elsevier, Amsterdam

    Google Scholar 

  • Mattigod SV, Sposito G (1979) Chemical modeling of trace metal equilibria in contaminated soil solutions using the computer program GEOCHEM. Chemical modeling in aqueous systems. Henne E. A. Editions, Washington D.C. Am Chem Soc 93:837–856

    Google Scholar 

  • McBride MB (1989) Reactions controlling heavy metal solubility in soils. Adv Soil Sci 10:1–56

    CAS  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York, p 406

    Google Scholar 

  • McBride MB (2001) Cupric ion activity in peat soil as a toxicity indicator for maize. J Environ Qual 30:78–84

    CAS  PubMed  Google Scholar 

  • McLaren RG, Crawford DV (1973a) Studies on soil copper. I. The fractionation of copper in soils. J Soil Sci 24(2):172–181

    CAS  Google Scholar 

  • McLaren RG, Crawford DV (1973b) Studies on soil copper. II. The specific adsorption of copper by soils. J Soil Sci 24(4):443–452

    CAS  Google Scholar 

  • Msaky JJ, Calvet R (1990) Adsorption behaviour of copper and zinc in soils: influence of pH on adsorption characteristics. Soil Sci 150(2):513–522

    CAS  Google Scholar 

  • Mulder J, Cresser MS (1994) Soil and soil solution chemistry. In: Moldan B, Cerny J (eds) Biogeochemistry of small catchments: a tool for environmental research. Wiley, Chichester, pp 107–131

    Google Scholar 

  • Murali V, Aylmore LAG (1983a) Competitive adsorption during solute transport in soils. 1: mathematical models. Soil Sci 135(3):143–150

    CAS  Google Scholar 

  • Murali V, Aylmore LAG (1983b) Competitive adsorption during solute transport in soils. 2: simulation of competitive adsorption. Soil Sci 135(4):203–213

    CAS  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical methods. SSSA, Madison, WI, pp 961–1010, SSA Book Ser. 5

    Google Scholar 

  • Nriagu J, Pacyna P, Szefer P, Markert B, Wuenschmann S, Namiesnik J (eds) (2012) Heavy metals in the environment. Maralte Books, The Netherlands

    Google Scholar 

  • O’Connor GA, Wierenga PJ, Cheng HH, Doxtader KG (1980) Movement of 2,4,5-T through large soil columns. Soil Sci 130:157–162

    Google Scholar 

  • Ogwada RA, Sparks DL (1986) A critical evaluation on the use of kinetics for determining thermodynamics of ion exchange. Soil Sci Soc Am J 50:300–305

    CAS  Google Scholar 

  • Pavlatou A, Polyzopoulos NA (1988) The role of diffusion in kinetics of phosphate desorption: the relevance of the Elovich equation. J Soil Sci 39:425–436

    CAS  Google Scholar 

  • Polański A, Smulikowski K (1969) Geochemia. Wydawnictwa Geologiczne, Warszawa

    Google Scholar 

  • Polish Standard (1994) Polish Standardisation Committee, ref. PrPN-ISO 10390 (E): soil quality and pH determination, 1st edn (in Polish)

    Google Scholar 

  • Poonia SR, Talibudeen O (1977) Sodium-calcium exchange equilibria in salt-affected and normal soils. J Soil Sci 28:276–288

    CAS  Google Scholar 

  • Prasa MNV (2008) Trace elements as contaminants and nutrients. Consequences in ecosystems and human health. Wiley, Hoboken, p. 777

    Google Scholar 

  • Ram N, Verloo M (1985) Effect of various organic materials on the mobility of heavy metals in soils. Environ Pollut 10:241–248

    CAS  Google Scholar 

  • Robert M (1996) Le sol: Interface dans l’Environnement, Ressource pour le développement. Masson, Paris, p 244

    Google Scholar 

  • Roszyk E, Szerszeń L (1988) Accumulation of heavy metals in arable soil layers of the copper smelters sanitary zones, part II: “Głogów”. Rocz Gleboz 39(4):147–158 (in Polish)

    Google Scholar 

  • Ryan J, Estefan G, Rashid A (2001) Soil and plant analysis laboratory manual, 2nd edn. International Center for Agricultural Research in the Dry Areas (ICARDA), the National Agricultural Research Center (NARC), Aleppo, Syria, p 172

    Google Scholar 

  • Sapek B (1976) Study on the copper sorption kinetics by peat-muck soils. In: Proceedings of the 5th international peat congress—Poznań: new recognition of peatlands and peats, vol 2. pp 236–245

    Google Scholar 

  • Sapek B, Sapek A (1980) The application of ion-selective electrodes to investigations of binding of copper and cadmium by humic substances from peat-muck soils. Pol J Soil Sci 13(2):125–134

    Google Scholar 

  • Sapek B, Zebrowski W (1976) Comparison of copper binding rate by peat-muck soils at various transformation stages. Pol J Soil Sci 9(2):93–99

    CAS  Google Scholar 

  • Sarbak Z (2000) Adsorption and adsorbents. Theory and application. Wydawnictwo Nauko we UAM, Seria Chemia Nr 71., 167 str. (in Polish)

    Google Scholar 

  • Schindler PW, Fürst B, Dick R, Wolf PU (1976) Ligand properties of surface silanol groups I. Surface complex formation with Fe3+, Cu2+, Cd2+ and Pb2+. J Colloid Interface Sci 55:469–475

    CAS  Google Scholar 

  • Schulte A, Beese F (1994) Isotherms of cadmium sorption densities. J Environ Qual 23:712–718

    CAS  Google Scholar 

  • Schulthess CP, Dey DK (1996) Estimation of Langmuir constants using linear and nonlinear least squares regression analyses. Soil Sci Soc Am J 60:433–442

    CAS  Google Scholar 

  • Schultz MF, Benjamin MM, Ferguson JF (1987) Adsorption and desorption of metals on ferrihydrite: reversibility of the reaction and sorption properties of the generated solid. Environ Sci Technol 21:863–869

    CAS  Google Scholar 

  • Sillén LG, Martell AE (1971) Stability constants of metal-ion complexes. Suppl. 1, pt. I and II. The Chemical Society, Metcalfe and Cooper, Ltd, London, p 865

    Google Scholar 

  • Skopp J (1986) Analysis of time dependent chemical processes in soils. J Environ Qual 15:205–213

    CAS  Google Scholar 

  • Soil Taxonomy (1975) A basic system of soil classification for making and interpreting soil surveys: soil survey staff. U.S. Dept Agric. Handb. 436. U.S. Govt Print. Off. Washington, DC

    Google Scholar 

  • Sokołowska Z (1989) The role of surface uniformity in adsorption processes occurring in soils. Problemy Agrofizyki 58:1–170, (in Polish) kinetics

    Google Scholar 

  • Sparks DL (1986) Kinetics of reactions in pure and mixed systems. In: Sparks DL (ed) Soil physical chemistry. CRC Press, Boca Raton, FL, pp 83–178

    Google Scholar 

  • Sparks DL (1989) Kinetics of soil chemical processes. Academic, San Diego, CA, p 210

    Google Scholar 

  • Sparks DL (1995) Environmental soil chemistry. Academic, San Diego, CA, p 267

    Google Scholar 

  • Sparks DL (2000) New frontiers elucidating the kinetics and mechanisms of metals and oxyanion sorption at the soil mineral/water interface. J Plant Nutr Soil Sci 163:563–570

    CAS  Google Scholar 

  • Sposito G (1982) On the use of the Langmuir equation in the interpretation of adsorption phenomena II. The “Two-surface” Langmuir equation. Soil Sci Soc Am J 46:1147–1152

    CAS  Google Scholar 

  • Sposito G (1984) The surface chemistry of soils. Oxford University Press, New York, p 234

    Google Scholar 

  • Stawiński J (1977) Interrelationships between the specific surface area and some physico-chemical properties of soils. Zesz Probl Post Nauk Roln 197:229–240

    Google Scholar 

  • Taylor RW, Kamaleldin H, Mehadi AA, Shoford WJ (1995) Kinetics of zinc sorption by soils. Commun Soil Sci Plant Anal 26(11 & 12):1761–1771

    CAS  Google Scholar 

  • Thomas GW (1982) Exchangeable cations. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. Chemical and microbial properties (No 9), 2nd edn. ASA-SSSA, Madison, WI, pp 159–165

    Google Scholar 

  • Tiller KG, Gerth J, Brummer G (1984) The sorption of Cd, Zn and Ni by soil clay fractions: procedures for partition of bound forms and their interpretation. Geoderma 34:1–16

    CAS  Google Scholar 

  • Van Bladel R, Laudelout H (1967) Apparent reversibility of ion-exchange reactions in clay suspension. Soil Sci 104:134–137

    Google Scholar 

  • Van Bladel R, Halen H, Cloos P (1993) Calcium-zinc and calcium–cadmium exchange in suspensions of various types of clays. Clay Miner 28:33–38

    Google Scholar 

  • Veith JA, Sposito G (1977) On the use of the Langmuir equation in the interpretation of “Adsorption” phenomena. Soil Sci Soc Am J 41:697–702

    CAS  Google Scholar 

  • Verburg K, Baveye P (1994) Hysteresis in the binary exchange of cations on 2:1 clay minerals. A critical review. Clay Miner 42:207–220

    CAS  Google Scholar 

  • Violante A, Krishnamurti GSR, Pigna M (2008) Factors affecting the sorption/desorption of trace elements in soil environments. In: Violante A, Ming Huang P, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environments. John Wiley & Sons, Inc., New York, pp 169–213

    Google Scholar 

  • Weber WJ Jr (1984) Evolution of a technology. J Environ Eng Div 110:899–917

    CAS  Google Scholar 

  • Wilk Z, Bocheńska T (2003) Hydrogeology of Polish mineral deposits and hydrological mining problems. Ed. AGH University of Science and Technology Press, Cracow, (Poland), 478 p. ISBN: 83-89388-21-9 (in Polish)

    Google Scholar 

  • WRB (1998) World reference base for soil resources. 84 World soil resources reports. FAO-ISSS-ISRIC

    Google Scholar 

  • Wu J, Laird DA, Thompson ML (1999) Sorption and desorption of copper on soil clay components. J Environ Qual 29(1):334–338

    Google Scholar 

  • www.kghm.pl. Accessed 2 February 2015

  • Xian X, Shokohifard G (1989) Effect of pH on chemical forms and plant availability of cadmium, zinc and lead in polluted soils. Water Air Soil Pollut 45:265–273

    CAS  Google Scholar 

  • Zehetner F, Wenzel WW (2000) Nickel and copper sorption in acid soils. Soil Sci 165(6):463–472

    CAS  Google Scholar 

  • Zhang M, Nyborg M, Malhi SS, McKenzie RH, Solberg E (2000) Phosphorus release from coated monoammonium phosphate: effect of coating thickness, temperature, elution medium, soil moisture and placement method. Can J Soil Sci 80:127–134

    CAS  Google Scholar 

  • Zhu H, Selim HM (2000) Hysteretic behavior of metolachlor adsorption-desorption in soils. Soil Sci 165(8):632–645

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean B. Diatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Diatta, J.B., Chudzińska, E., Drobek, L., Wojcicka-Półtorak, A., Markert, B., Wünschmann, S. (2015). Multiple-Phase Evaluation of Copper Geochemistry. In: Sherameti, I., Varma, A. (eds) Heavy Metal Contamination of Soils. Soil Biology, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-14526-6_3

Download citation

Publish with us

Policies and ethics