Skip to main content

Advertisement

Log in

Controls on microbial mercury transformations in contaminated sediments downstream of the Idrija mercury mine (West Slovenia) to the Gulf of Trieste (northern Adriatic)

  • ISEB 2015: Biogeochemical Dynamics of Sediment-Water Systems: Processes and Modelling
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Concentrations and transformations of mercury were measured in river, estuarine, and marine sediments to determine factors affecting the fate of mercury entering the northern Adriatic Sea.

Materials and methods

Radiotracer methodology was used to compare rates of mercury methylation (203Hg), MeHg demethylation (14C), and sulfate reduction (35S) in sediment depth profiles to concentrations of total and dissolved mercury species in the lower freshwater region of the Isonzo River, the coastal lagoons, and in the Gulf of Trieste, northern Adriatic Sea.

Results and discussion

Mercury was readily methylated and demethylated in all sediments, but the relative activity of these processes varied greatly with location. Methylation activity increased greatly from freshwater to the marine regions; however, demethylation was extremely high in the estuarine and lagoon sites. Ratios of methylation to demethylation were low in these coastal sites but increased further offshore in the gulf, which agreed with increased ratios of MeHg to total Hg (%MeHg) in gulf sediments. Comparisons of microbial activities indicated that sulfate reduction strongly controlled both methylation and demethylation. However, Hg methylation in coastal lagoon sediments was controlled by rapid demethylation and the bioavailability of Hg that was affected by Hg adsorption and precipitation. Methylation in offshore marine sites correlated with sulfate reduction but not the partitioning of Hg between pore water and solid phases. The decrease in sulfide production offshore exacerbated Hg methylation.

Conclusions

The freshwater to marine gradient in the Idrija/Soča/Isonzo/Adriatic region is dynamic, exhibiting horizontally variable rates of microbial activities and Hg transformations that create “hot spots” of MeHg accumulation that are controlled differently in each region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avcin A, Vriser B (1983) The northern Istrian soft bottom communities: the example of Piran Bay (north Adriatic). Bioloski Vestnik 31:129–160

    Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  CAS  Google Scholar 

  • Barkay T, Wagner-Dobler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–52

    Article  CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ Sci Technol 33:951–957

    Article  CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller CL (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. ACS Symp Ser 835:262–297

    Article  CAS  Google Scholar 

  • Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquatic Sci 49:1010–1017

    Article  CAS  Google Scholar 

  • Brambati A (1970) Provenienza, trasporto e accumulo dei sedimenti recenti nelle lagune di Marano e di Grado e nei litorali tra i fiumi Isonzo e Tagliamento. Memorie della Società Geologica Italiana 9:281–329

    Google Scholar 

  • Brambati A (2001) Coastal sediments and biota as indicators of Hg contamination in the Marano and Grado Lagoons. RMZ – Materials and Geoenvironment 48:165–171

    CAS  Google Scholar 

  • Choi S-C, Chase T Jr, Bartha R (1994) Enzymatic catalysis of mercury methylation by Desulfovibrio desulfuricans LS. Appl Environ Microbiol 60:1342–1346

    CAS  Google Scholar 

  • Clarkson TW (2002) The three modern faces of mercury. Environ Health Perspect 110:11–23

    Article  CAS  Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    CAS  Google Scholar 

  • Covelli S, Faganeli J, Horvat M, Brambati A (2001) Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity (Gulf of Trieste, northern Adriatic sea). Appl Geochem 16:541–558

    Article  CAS  Google Scholar 

  • Drott A, Lambertsson L, Bjoern E, Skyllberg U (2008) Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments? Environ Sci Technol 42:153–158

    Article  CAS  Google Scholar 

  • Faganeli J (1989) Sedimentation of particulate nitrogen and amino acids in shallow coastal waters (Gulf of Trieste, northern Adriatic). Mar Chem 26:67–80

    Article  CAS  Google Scholar 

  • Faganeli J, Horvat M, Covelli S, Fajon V, Logar M, Lipej L, Cermelj B (2003) Mercury and methylmercury in the Gulf of Trieste (northern Adriatic Sea). Sci Tot Environ 304:315–326

    Article  CAS  Google Scholar 

  • Fitzgerald WF, Clarkson TW (1991) Mercury and monomethylmercury—present and future concerns. Environ Health Perspect 96:159–166

    Article  CAS  Google Scholar 

  • Fitzgerald WF (1993) Mercury as a global pollutant. The World & I 10:192–199

    Google Scholar 

  • Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72:457–464

    Article  CAS  Google Scholar 

  • Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26:2281–2287

    Article  CAS  Google Scholar 

  • Gilmour CC, Riedel GS (1995) Measurements of Hg methylation in sediments using high specific activity 203Hg and ambient incubation. Water Air Soil Poll 80:747–756

    Article  CAS  Google Scholar 

  • Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, Johs A, Hurt RA, Bailey KL, Elias DA (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47:11810–11820

    Article  CAS  Google Scholar 

  • Graham AM, Aiken GR, Gilmour CC (2012) Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environ Sci Technol 46:2715–2723

    Article  CAS  Google Scholar 

  • Gray JE, Hines ME (2009) Biogeochemical mercury methylation influenced by reservoir eutrophication, Salmon Falls Creek Reservoir, Idaho, USA. Chem Geol 258:157–167

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2004) Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ Sci Technol 38:1487–1495

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2006) Methylmercury cycling in sediments on the continental shelf of southern New England. Geochim Cosmochim Acta 70:918–930

    Article  CAS  Google Scholar 

  • Han S, Obraztsova A, Pretto P, Choe K-Y, Gieskes J, Deheyn DD, Tebo BM (2007) Biogeochemical factors affecting mercury methylation in sediments of the Venice Lagoon, Italy. Environ Toxicol Chem 26:655–663

    Article  CAS  Google Scholar 

  • Hines ME, Faganeli J, Planinc R (1997) Sedimentary anaerobic microbial biogeochemistry in the Gulf of Trieste, northern Adriatic Sea: influences of bottom water oxygen depletion. Biogeochemisty 39:65–86

    Article  CAS  Google Scholar 

  • Hines ME, Horvat M, Faganeli J, Bonzongo JCJ, Barkay T, Major EB, Scott KJ, Bailey EA, Warwick JJ, Lyons WB (2000) Mercury biogeochemistry in the Idrija River, Slovenia, from above the mine into the Gulf of Trieste. Environ Res 83:129–139

    Article  CAS  Google Scholar 

  • Hines ME, Faganeli J, Adatto I, Horvat M (2006) Microbial mercury transformations in marine, estuarine and freshwater sediment downstream of the Idrija mercury mine, Slovenia. Appl Geochem 21:1924–1939

    Article  CAS  Google Scholar 

  • Hines ME, Visscher PT, Teske A, Devereux R (2008) Sulfur cycling. In: Hurst CJ et al (eds) Manual for environmental microbiology. American Society for Microbiology Press, Washington, DC, pp. 497–510

    Google Scholar 

  • Hines ME, Poitras EN, Covelli S, Faganeli J, Emili A, Zizek S, Horvat M (2012) Mercury methylation and demethylation in Hg-contaminated lagoon sediments (Marano and Grado Lagoon, Italy). Estuar Coast Shelf Sci 113:85–95

    Article  CAS  Google Scholar 

  • Hollweg TA, Gilmour CC, Mason RP (2009) Methylmercury production in sediments of Chesapeake Bay and the mid-Atlantic continental margin. Mar Chem 114:86–101

    Article  CAS  Google Scholar 

  • Horvat M, Zvonaric T, Stegnar P (1987) Determination of mercury in seawater by cold vapour atomic absorption spectrometry. Acta Adriat 28:59–63

    Google Scholar 

  • Horvat M (1991) Determination of methylmercury in biological certified reference materials. Water, Air, Soil Poll 56:95–102

    Article  CAS  Google Scholar 

  • Horvat M, Liang L, Bloom N (1993) Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples, part 2: water. Anal Chim Acta 282:153–168

    Article  CAS  Google Scholar 

  • Horvat M, Covelli S, Faganeli J, Logar M, Mandic V, Rajar R, Sirca A, Zagar D (1999) Mercury in contaminated coastal environments, a case study: the Gulf of Trieste. Sci Total Environ 238:43–56

    Article  Google Scholar 

  • Horvat M, Jereb V, Fajon V, Logar M, Kotnik M, Faganeli J, Hines ME, Bonzongo J-C (2002) Mercury distribution in water, sediment and soil in the Idrijca and Soca river systems. Geochem Explor Environ Analysis 2:287–296

    Article  CAS  Google Scholar 

  • Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72:7919–7921

    Article  CAS  Google Scholar 

  • Lin C-C, Yee N, Barkay T (2011) Microbial transformation in the mercury cycle. In: Liu L, Cai Y, O’Driscoll N (eds) Environmental chemistry and toxicology of mercury. John Wiley & Sons, Inc, USA In print, pp. 155–191

    Chapter  Google Scholar 

  • Lindberg SE, Harriss RC (1974) Mercury-organic matter associations in estuarine sediments and interstitial water. Environ Sci Technol 8:459–462

    Article  CAS  Google Scholar 

  • Liu J, Valsaraj KT, Delaune RD (2009) Inhibition of mercury methylation by iron sulfides in an anoxic sediment. Environ Eng Sci 26:833–840

    Article  CAS  Google Scholar 

  • Lu X, Liu Y, Johs A, Zhao L, Wang T, Yang Z, Lin H, Elias DA, Pierce EM, Liang L, Barkay T, Gu B (2016) Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis Bem. Environ Sci Technol 50:4366–4373

    Article  CAS  Google Scholar 

  • Marvin-DiPasquale MC, Agee J, McGowan C, Oremland RS, Thomas M, Krabbenhoft D, Gilmour CC (2000) Methyl-mercury degradation pathways: a comparison among three mercury-impacted ecosystems. Environ Sci Technol 34:4908–4917

    Article  CAS  Google Scholar 

  • Mason RP, Lawrence AL (1999) Concentration, distribution, and bioavailability of mercury and methylmercury in sediments of Baltimore Harbor and Chesapeake Bay, Maryland, USA. Environ Toxicol Chem 18:2438–2447

    CAS  Google Scholar 

  • Meng B, Feng X, Qiu G, Li Z, Yao H, Shang L, Yan H (2016) The impacts of organic matter on the distribution and methylation of mercury in a hydroelectric reservoir in Wujiang River, Southwest China. Environ Toxicol Chem 35:191–199

    Article  CAS  Google Scholar 

  • Merritt KA, Amirbahman A (2009) Mercury methylation dynamics in estuarine and coastal marine environments—a critical review. Earth Sci Rev 96:54–66

    Article  CAS  Google Scholar 

  • Mosetti F (1983) Sintesi sull’idrologia del Friuli-Venezia–Gulia. Quaderni dell’Ente Tutela Pesca 6:1–295

    Google Scholar 

  • Ogorelec B, Misic M, Faganeli J (1991) Marine geology of the Gulf of Trieste (northern Adriatic): sedimentological aspects. Mar Geol 99:79–92

    Article  Google Scholar 

  • Palinkas LA, Pirc S, Miko SF, Durn G, Namjesnik K, Kapelj S (1995) The Idrija mercury mine, Slovenia, a semi-millenium of continuous operation: an ecological impact. In: Richardson M (ed) Environmental toxicology assessment. Taylor and Francis, United Kingdom, pp. 317–339

    Google Scholar 

  • Paquette KE, Helz GR (1995) Solubility of cinnabar (red HgS) and implications for mercury speciation in sulfidic waters. Water Air Soil Pollut 80:1053–1056

    Article  CAS  Google Scholar 

  • Schartup AT, Balcom PH, Mason RP (2014) Sediment–porewater partitioning, total sulfur, and methylmercury production in estuaries. Environ Sci Technol 48:954–960

    Article  CAS  Google Scholar 

  • Singer MB, Harrison LR, Donovan PM, Blum JD, Marvin-DiPasquale M (2016) Hydrologic indicators of hot spots and hot moments of mercury methylation potential along river corridors. Sci Total Environ 568:697–711

    Article  CAS  Google Scholar 

  • Sirca A, Rajar R (1997) Calibration of a 2D mercury transport and fate model of the Gulf of Trieste. In: Rajar R, Brebbia M (eds) Proc. 4th Internat Conf Water Pollut. Computational mechanics publication, Southampton, pp 503–512

  • Varekamp JC, Buchholz tB MR, Mecray EL, Kreulen B (2000) Mercury in Long Island Sound sediments. J Coast Res 16:613–626

    Google Scholar 

  • Yu R-Q, Reinfelder JR, Hines ME, Barkay T (2013) Mercury methylation by the methanogen Methanospirillum hungatei. Appl Environ Micorbiol 79:6325–6330

    Article  CAS  Google Scholar 

  • Zhang T, Kim B, Levard C, Reinsch BC, Lowry GV, Deshusses MA, Hsu-Kim H (2012) Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ Sci Technol 46:6950–6958

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciated the technical assistance of E. Poitras, D. Warden, T Koprivnjak, and I. Skuk. Financial support was provided by the US National Science Foundation; the Slovene Ministry of Education, Science and Sport; and the Commissario Delegato for the Marano and Grado Lagoons. We appreciated comments on the manuscript by Tamar Barkay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Hines.

Additional information

Responsible editor: Nives Ogrinc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hines, M.E., Covelli, S., Faganeli, J. et al. Controls on microbial mercury transformations in contaminated sediments downstream of the Idrija mercury mine (West Slovenia) to the Gulf of Trieste (northern Adriatic). J Soils Sediments 17, 1961–1971 (2017). https://doi.org/10.1007/s11368-016-1616-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1616-x

Keywords

Navigation