Skip to main content
Log in

The effects of anoxia on Si dynamics in sediments

  • Sediments, Sec 2 • Physical and Biogeochemical Processes • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

This study explored the effects of anoxia on adsorbed Si dynamics in surface sediments. While the effects of anoxia on the adsorption and release of phosphorus (P) have been studied frequently, its effects on adsorbed silicon (Si) are commonly ignored, despite the similarities between the elements. The study addresses the theory that as both Si and P produce anionic ligands, processes that affect adsorbed P and its release could also affect Si and its release.

Materials and methods

Two main procedures were conducted: A sequential extraction procedure composed of (1) water, (2) 0.46 M sodium chloride, (3) 0.11 M sodium dithionite, (4) 0.1 M sodium hydroxide and (5) 0.5 M hydrochloric acid extractions, and a long-term release dynamics experiment (RDE) lasting 28 days. Both were conducted using seven sediment samples of different composition.

Results and discussion

Silicon behaved differently than P under anoxic conditions. Although anoxia generally causes increased release of Fe-bound P due to Fe3+ reduction, the release of Si decreased under anoxic conditions in the loosely sorbed and redox-sensitive fractions of the sediments. The long-term experiment (RDE) showed that Si release was time-dependent and slower under anoxic than oxic conditions. Resorption to Al oxides and the formation of colloidal mixed Fe-Si oxides are possible reasons for these results. There were, however, also some indications that anoxic conditions enhanced biogenic Si (BSi) and mineral Si dissolution.

Conclusions

Anoxia clearly affects Si sorption processes, but it may have both negative (e.g. increased resorption preventing P adsorption) and positive (e.g. enhanced BSi dissolution, increasing dissolved Si concentration in water) effects on the release of Si. More investigations dealing with the subject are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexandre A, Meunier J, Colin F, Koud J (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682

    Article  CAS  Google Scholar 

  • Anderson PR, Benjamin MM (1985) Effect of silicon on the crystallization and adsorption properties of ferric oxides. Environ Sci Technol 19:1048–1053

    Article  CAS  Google Scholar 

  • Bauerfeind E, Bodungen Bv (2006) Underestimation of biogenic silicon flux due to dissolution in sediment trap samples. Mar Geol 226:297–306

    Article  CAS  Google Scholar 

  • Belias C, Dassenakis M, Scoullos M (2007) Study of the N, P and Si fluxes between fish farm sediment and seawater. Results of simulation experiments employing a benthic chamber under various redox conditions. Mar Chem 103:266–275

    Article  CAS  Google Scholar 

  • Brinkman R (1970) Ferrolysis, a hydromorphic soil forming process. Geoderma 3:199–206

    Article  CAS  Google Scholar 

  • Brzezinski MA, Villareal TA, Lipschultz F (1998) Silica production and the contribution of diatoms to new and primary production in the central North Pacific. Mar Ecol Prog Ser 167:89–104

    Article  CAS  Google Scholar 

  • Chakravarti IM, Laha RG, Roy J (1967) Handbook of Methods of Applied Statistics. Volume I. John Wiley and Sons, New York, pp 392–394

    Google Scholar 

  • Danielsson Å (2014) Influence of hypoxia on silicate concentrations in the Baltic Proper (Baltic Sea). Boreal Environ Res 19:267–280

    CAS  Google Scholar 

  • DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732

    Article  CAS  Google Scholar 

  • Einsele W (1936) Über die Beziehungen des Eisenkreislaufs zum Phosphatekreislauf im eutrophen See. Arch Hydrobiol 29:664–686

    CAS  Google Scholar 

  • Fraysse F, Pokrovsky O, Schott J, Meunier J (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206

    Article  CAS  Google Scholar 

  • Hartikainen H, Pitkanen M, Kairesalo T, Tuominen L (1996) Co-occurrence and potential chemical competition of phosphorus and silicon in lake sediment. Water Res 30:2472–2478

    Article  CAS  Google Scholar 

  • Hiemenz PC (1986) Principles of Colloid and Surface Chemistry. Marcel Dekker, New York

    Google Scholar 

  • Hingston FJ, Atkinson RJ, Posner AM, Quirk JP (1967) Specific adsorption of anions. Nature 215:1459–1469

    Article  CAS  Google Scholar 

  • Holford ICR, Patrick WH Jr (1979) Effects of reduction and pH changes on phosphate sorption and mobility in an acid soil. Soil Sci Soc Am J 43:292–297

    Article  CAS  Google Scholar 

  • Jackson ML, Lim CH, Zelazny LW (1986) Oxides, hydroxides, and aluminosilicates. In: Klute A (ed) Methods of Soil Analysis. Part 1. 2nd ed. Agronomy 9:101–150

    Google Scholar 

  • Jensen HS, Thamdrup B (1993) Iron bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia 253:47–59

    Article  CAS  Google Scholar 

  • Koning E, Epping E, Van Raaphorst W (2002) Determining biogenic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions. Aquat Geochem 8:37–67

    Article  CAS  Google Scholar 

  • Lee SO, Tran T, Jung BH, Kim SJ, Kim MJ (2007) Dissolution of iron oxide using oxalic acid. Hydrometallurgy 87:91–99

    Article  CAS  Google Scholar 

  • Lehtimäki M, Tallberg P, Siipola V (2013) Seasonal Dynamics of Amorphous Silica in Vantaa River Estuary. Silicon 5:35–51

    Article  Google Scholar 

  • Loucaides S, Michalopoulos P, Presti M, Koning E, Behrends T, Van Cappellen P (2010) Seawater-mediated interactions between diatomaceous silica and terrigenous sediments: results from long-term incubation experiments. Chem Geol 270:68–79

    Article  CAS  Google Scholar 

  • Lukkari K, Hartikainen H, Leivuori M (2007a) Fractionation of sediment phosphorus revisited. I: fractionation steps and their biogeochemical basis. Limnol Oceanogr Methods 5:433–444

    Article  CAS  Google Scholar 

  • Lukkari K, Leivuori M, Hartikainen H (2007b) Fractionation of sediment phosphorus revisited: II. Changes in phosphorus fractions during sampling and storing in the presence or absence of oxygen. Limnol Oceanogr Methods 5:445–456

    Article  CAS  Google Scholar 

  • Manahan SE (1994) Environmental Chemistry. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Mayer TD, Jarrell WM (2000) Phosphorus sorption during iron(II) oxidation in the presence of dissolved silica. Water Res 34:3949–3956

    Article  CAS  Google Scholar 

  • Mayer TD, Jarrell WM (1996) Formation and stability of iron(II) oxidation products under natural concentrations of dissolved silica. Water Res 30:1208–1214

    Article  CAS  Google Scholar 

  • Meng X, Letterman RD (1993) Effect of component oxide interaction on the adsorption properties of mixed oxides. Environ Sci Technol 27:970–975

    Article  CAS  Google Scholar 

  • Michalopoulos P, Aller RC (2004) Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage. Geochim Cosmochim Acta 68:1061–1085

    Article  CAS  Google Scholar 

  • Mortimer CH (1941) The Exchange of Dissolved Substances Between Mud and Water in Lakes I, II. J Ecol 29:280–329

    Article  CAS  Google Scholar 

  • Mullin J, Riley J (1955) The colometric determination of silicate with special reference to sea and natural waters. Analytica Chimica Acta 12:162–176

    Article  CAS  Google Scholar 

  • Panias D, Taxiarchou M, Paspaliaris I, Kontopoulos A (1996) Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions. Hydrometallurgy 42:257–265

    Article  CAS  Google Scholar 

  • Papush L, Danielsson Å, Rahm L (2009) Dissolved silica budget for the Baltic Sea. J Sea Res 62:31–41

    Article  CAS  Google Scholar 

  • Patrick WH Jr, Khalid RA (1974) Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186:53–55

    Article  CAS  Google Scholar 

  • Piispanen JK, Sallanko JT (2011) Effect of silica on iron oxidation and floc formation. J Environ Sci Health, Part A 46:1092–1101

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing

    Google Scholar 

  • Ragueneau O, Conley DJ, Leynaert A, Longphuirt SN, Slomp CP (2006) Role of diatoms in silicon cycling and coastal marine food webs. In: Ittecot V, Unger D, Humborg C, Tac AN (eds) The silicon cycle: human perturbations and impacts on aquatic systems, vol 66, SCOPE., pp 163–195

    Google Scholar 

  • Reynolds C (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Roden EE, Edmonds JW (1997) P mobilization in Fe-rich anaerobic sediments. Microbial Fe(III) oxide reduction versus iron-sulfide formation. Arch Hydrobiol 139:347–378

    CAS  Google Scholar 

  • Saccone L, Conley DJ, Koning E, Sauer D, Sommer M, Kaczorek D, Blecker SW, Kelly EF (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 58:1446–1459

    Article  CAS  Google Scholar 

  • Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108

    Article  CAS  Google Scholar 

  • Schwertmann U, Thalmann H (1976) The influence of [Fe(II)], [Si], and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Miner 11:189–200

    Article  CAS  Google Scholar 

  • Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 105:194–202

    Article  CAS  Google Scholar 

  • Siipola V, Mäntyniemi S, Lehtimäki M, Tallberg P (2013) Separating biogenic and adsorbed pools of silicon in sediments using Bayesian inference. Silicon 5:53–65

    Article  CAS  Google Scholar 

  • Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329

    Article  CAS  Google Scholar 

  • Standard SFS 3008 (1990) Veden, lietteen ja sedimentin kuiva-aineen ja hehkutusjäännöksen määritys

    Google Scholar 

  • Tallberg P, Lukkari K, Raike A, Lehtoranta J, Leivuori M (2009) Applicability of a sequential P fractionation procedure to Si in sediment. J Soils Sediments 9:594–603

    Article  CAS  Google Scholar 

  • Van Ranst E, De Coninck F (2002) Evaluation of ferrolysis in soil formation. Eur J Soil Sci 53:513–519

    Article  Google Scholar 

  • Villnäs A, Norkko J, Lukkari K, Hewitt J, Norkko A (2012) Consequences of increasing hypoxic disturbance on benthic communities and ecosystem functioning. PLOS ONE 7:1–12

    Article  Google Scholar 

  • Weber WJ Jr, Stumm W (1965) Formation of a silicato-iron(III) complex in dilute aqueous solution. J Inorg Nucl Chem 27:237–329

    Article  CAS  Google Scholar 

  • Zillén L, Conley DJ, Andrén T, Andrén E, Björck S (2008) Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact. Earth-Sci Rev 91:77–92

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virpi Siipola.

Additional information

Responsible editor: Nives Ogrinc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siipola, V., Lehtimäki, M. & Tallberg, P. The effects of anoxia on Si dynamics in sediments. J Soils Sediments 16, 266–279 (2016). https://doi.org/10.1007/s11368-015-1220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-015-1220-5

Keywords

Navigation