Skip to main content

Advertisement

Log in

Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use

  • LCIA OF IMPACTS ON HUMAN HEALTH AND ECOSYSTEMS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Guidance is needed on best-suited indicators to quantify and monitor the man-made impacts on human health, biodiversity and resources. Therefore, the UNEP-SETAC Life Cycle Initiative initiated a global consensus process to agree on an updated overall life cycle impact assessment (LCIA) framework and to recommend a non-comprehensive list of environmental indicators and LCIA characterization factors for (1) climate change, (2) fine particulate matter impacts on human health, (3) water consumption impacts (both scarcity and human health) and 4) land use impacts on biodiversity.

Methods

The consensus building process involved more than 100 world-leading scientists in task forces via multiple workshops. Results were consolidated during a 1-week Pellston Workshop™ in January 2016 leading to the following recommendations.

Results and discussion

LCIA framework: The updated LCIA framework now distinguishes between intrinsic, instrumental and cultural values, with disability-adjusted life years (DALY) to characterize damages on human health and with measures of vulnerability included to assess biodiversity loss. Climate change impacts: Two complementary climate change impact categories are recommended: (a) The global warming potential 100 years (GWP 100) represents shorter term impacts associated with rate of change and adaptation capacity, and (b) the global temperature change potential 100 years (GTP 100) characterizes the century-scale long term impacts, both including climate-carbon cycle feedbacks for all climate forcers. Fine particulate matter (PM2.5) health impacts: Recommended characterization factors (CFs) for primary and secondary (interim) PM2.5 are established, distinguishing between indoor, urban and rural archetypes. Water consumption impacts: CFs are recommended, preferably on monthly and watershed levels, for two categories: (a) The water scarcity indicator “AWARE” characterizes the potential to deprive human and ecosystems users and quantifies the relative Available WAter REmaining per area once the demand of humans and aquatic ecosystems has been met, and (b) the impact of water consumption on human health assesses the DALYs from malnutrition caused by lack of water for irrigated food production. Land use impacts: CFs representing global potential species loss from land use are proposed as interim recommendation suitable to assess biodiversity loss due to land use and land use change in LCA hotspot analyses.

Conclusions

The recommended environmental indicators may be used to support the UN Sustainable Development Goals in order to quantify and monitor progress towards sustainable production and consumption. These indicators will be periodically updated, establishing a process for their stewardship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. One participant expressed in a minority statement its concerns regarding the implications of recommending two impact categories for climate change for practical applications of LCA, with the risk that different climate change labels used on products present divergent information.

References

  • Allen MR, Fuglestvedt JS, Shine KP, Reisinger A, Pierrehumbert RT, Forster PM (2016) New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat Clim Chang 6(8):773–776

    Article  CAS  Google Scholar 

  • Antón A, Maia de Souza D, Teillard F, Milà i Canals L (2016) Addressing biodiversity and ecosystem services in life cycle assessment. Geneletti D (ed) Handbook on biodiversity and ecosystems services in impact assessment. Edward Elgar Publishing, ISBN: 978 1 78347 898 9, Chapter 7, pp 140–166

  • Apte JS, Bombrun E, Marshall JD, Nazaroff WW (2012) Global intraurban intake fractions for primary air pollutants from vehicles and other distributed sources. Environ Sci Technol 46(6):3415–3423

    Article  CAS  Google Scholar 

  • Apte JS, Marshall JD, Cohen AJ, Brauer M (2015) Addressing global mortality from ambient PM2.5. Environ Sci Technol 49(13):8057–8066

    Article  CAS  Google Scholar 

  • Bayart JB, Bulle C, Deschênes L, Margni M, Pfister S, Vince F, Koehler A (2010) A framework for assessing off-stream freshwater use in LCA. Int J Life Cycle Assess 15(5):439–453

    Article  CAS  Google Scholar 

  • Bennett DH, McKone TE, Evans JS, Nazaroff WW, Margni MD, Jolliet O, Smith KR, Bennett DH (2002) Defining intake fraction. Environ Sci Technol 36:207A–211A

    Article  CAS  Google Scholar 

  • Boucher O, Reddy M (2008) Climate trade-off between black carbon and carbon dioxide emissions. Energy Policy 36:193–200

    Article  Google Scholar 

  • Boulay A-M, Bulle C, Bayart JB, Deschênes L, Manuele M (2011) Regional characterization of freshwater use in LCA: modeling direct impacts on human health. Environ Sci Technol 45(20):8948–8957

    Article  CAS  Google Scholar 

  • Boulay AM, Motoshita M, Pfister S, Bayart JB, Franceschini H, Muñoz I, Bulle C, Margni M (2015a) Water use impact assessment methods (part a): methodological and quantitative comparison of scarcity and human health impacts models. Int J Life Cycle Assess 20(1):139–160

    Article  Google Scholar 

  • Boulay AM, Bayart JB, Bulle C, Franceschini H, Motoshita M, Muñoz I, Pfister S, Margni M (2015b) Analysis of water use impact assessment methods (part b): applicability for water footprinting and decision making with a laundry case study. Int J Life Cycle Assess 20(6):1–15

    Article  Google Scholar 

  • Boulay AM, Bare J, De Camillis C, Döll P, Gassert F, Gerten D, Humbert S, Inaba A, Itsubo N, Lemoine Y, Margni M (2015c) Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. Int J Life Cycle Assess 20(5):577–583

    Article  CAS  Google Scholar 

  • Boulay AM, Bare J, Benini L, Berge M, Lathuilliere M, Manzardo A, Margni M, Motoshita M, Núñez M, Oki T, Pastor A, Ridoutt B, Worbe S, Pfister S (2018) The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on Available WAter REmaining (AWARE). Int J Life Cycle Assess 23(2):368–378

    Article  Google Scholar 

  • Bulle C, Margni M, Kashef-Haghighi S, Boulay AM, Bourgault G, De Bruille V, Cao V, Fantke P, Hauschild M, Henderson A, Humbert S, Kounina A, Laurent A, Levasseur A, Liard G, Patouillard L, Rosenbaum R, Roy PO, Shaked S, Jolliet O (2018) IMPACT World+: a globally regionalized life cycle impact assessment method. Int J Life Cycle Assess (in review)

  • Burnett RT, Pope CA 3rd, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, Anderson HR (2014) An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect 122(4):397–403

    Google Scholar 

  • Chaudhary A, Verones F, de Baan L, Hellweg S (2015) Quantifying land use impacts on biodiversity: combining species–area models and vulnerability indicators. Environ Sci Technol 49(16):9987–9995

    Article  CAS  Google Scholar 

  • Chaudhary A, Verones F, de Baan L, Pfister S, Hellweg S (2016) Chapter 11. Land stress: potential species loss from land use (global; PSLrg. In LC-Impact version 0.5. A spatially differentiated life cycle impact assessment report. www.lc-impact.eu access 29/11/2016

  • Cherubini F, Fuglestvedt J, Gasser T, Reisinger A, Cavalett O, Huijbregts MAJ, Johansson DJA, Jørgensen SV, Raugei M, Schivley G, Strømman AH, Tanaka K, Levasseur A (2016) Bridging the gap between impact assessment methods and climate science. Environ Sci Pol 64:129–140

    Article  Google Scholar 

  • Chiarucci A, Araújo MB, Decocq G, Beierkuhnlei C, Fernández-Palacios JM (2010) The concept of potential natural vegetation: an epitaph? J Veg Sci 21(6):1172–1178

    Article  Google Scholar 

  • Coelho CRV, Michelsen O (2014) Land use impacts on biodiversity from kiwifruit production in New Zealand assessed with global and national datasets. Int J Life Cycle Assess 19(2):285–296

    Article  Google Scholar 

  • Curran M, Hellweg S, Beck J (2014) Is there any empirical support for biodiversity offset policy? Ecol Appl 24(4):617–632

    Article  Google Scholar 

  • Curran M, Maia de Souza D, Antón A, Teixeira R, Michelsen O, Vidal-Legaz B, Sala S, Milà i Canals L (2016) How well does LCA model land use impacts on biodiversity?—a comparison with approaches from ecology and conservation. Environ Sci Technol 50(6):2782–2795

    Article  CAS  Google Scholar 

  • de Baan L, Alkemade R, Koellner T (2013) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18(6):1216–1230

    Article  Google Scholar 

  • Fantke P, Jolliet O, Apte JS, Cohen AJ, Evans JS, Hänninen OO, Hurley F, Jantunen MJ, Jerrett M, Levy JI, Loh MM, Marshall JD, Miller BG, Preiss P, Spadaro JV, Tainio M, Tuomisto JT, Weschler CJ, McKone TE (2015) Health effects of fine particulate matter in life cycle impact assessment: conclusions from the Basel Guidance Workshop. Int J Life Cycle Assess 20:276–288

    Article  CAS  Google Scholar 

  • Fantke P, Jolliet O, Apte JS, Hodas N, Evans J, Weschler CJ, Stylianou KS, Jantunen M, McKone TE (2017) Characterizing aggregated exposure to primary particulate matter: recommended intake fractions for indoor and outdoor sources. Environ Sci Technol 51(16):9089–9100

    Article  CAS  Google Scholar 

  • Forouzanfar MH, Alexander L, Anderson HR et al (2015) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(10010):2287–2323

    Article  Google Scholar 

  • Frischknecht R, Büsser Knöpfel S (2013) Swiss eco-factors 2013 according to the ecological scarcity method methodological fundamentals and their application in Switzerland Environmental studies no 1330 Federal Office for the Environment, Bern, retrieved from: http://www.bafuadminch/publikationen/publikation/01750/indexhtml?lang=en

  • Frischknecht R, Jolliet O (eds) (2016) Global guidance for life cycle impact assessment indicators—volume 1. Publication of the UNEP/SETAC Life Cycle Initiative, Paris, DTI/2081/PA, ISBN: 978–92–807-3630-4, pp 159. http://www.lifecycleinitiative.org/training-resources/global-guidance-lcia-indicators-v-1/

  • Frischknecht R, Fantke P, Tschümperlin L, Niero M, Antón A, Bare J, Boulay A-M, Cherubini F, Hauschild MZ, Henderson A, Levasseur A, McKone TE, Michelsen O, Milà i Canals L, Pfister S, Ridoutt B, Rosenbaum RK, Verones F, Vigon B, Jolliet O (2016) Global guidance on environmental life cycle impact assessment indicators: progress and case study. Int J Life Cycle Assess 21(3):429–442

    Article  Google Scholar 

  • Hauschild M, Goedkoop M, Guinée J, Heijungs R, Huijbregts MAJ, Jolliet O, Margni M, De Schryver A (2011) Recommendations for life cycle impact assessment in the European context—based on existing environmental impact assessment models and factors European Commission—DG Joint Research Centre, JRC, Institute for Environment and Sustainability (IES), retrieved from: http://www.lctjrceceuropaeu/assessment/projects

  • Hauschild M, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, De Schryver A, Humbert S, Laurent A, Sala S, Pant R (2013) Identifying best existing practice for characterization modelling in life cycle impact assessment. Int J Life Cycle Assess 18(3):683–697

    Article  CAS  Google Scholar 

  • Hellweg S, Milà i Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 344(6188):1109–1113

    Article  CAS  Google Scholar 

  • Hodas N, Loh M, Shin H-M, Li D, Bennett D, McKone TE, Jolliet O, Weschler CJ, Jantunen M, Lioy P, Fantke P (2016) Indoor inhalation intake fractions of fine particulate matter: review of influencing factors. Indoor Air 26:836–856

    Article  CAS  Google Scholar 

  • Huijbregts M (2014) A critical view on scientific consensus building in life cycle impact assessment. Int J Life Cycle Assess 19(3):477–479

    Article  Google Scholar 

  • Huijbregts MAJ, Verones F, Azevedo LB, Chaudhary A, Cosme N, Fantke P, Goedkoop M, Hauschild M, Laurent A, Mutel C, Pfister S, Ponsioen T, Steinmann Z, van Zelm R, Vieira M and Hellweg S (2014) LC-impact version 01. Radboud University Nijmegen, NTNU, International Institute for Applied Systems Analysis, ETH Zürich, DTU Management Engineering, Pré Consultants

  • Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R (2017) ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22:138–147

    Article  Google Scholar 

  • Humbert S, Marshall JD, Shaked S, Spadaro JV, Nishioka Y, Preiss P, McKone TE, Hovarth A, Jolliet O (2011) Intake fraction for particulate matter: recommendations for life cycle impact assessment. Environ Sci Technol 45(11):4808–4816

    Article  CAS  Google Scholar 

  • Humbert S, Fantke P, Jolliet O (2015) Particulate matter formation. In: Hauschild M, MAJ H (eds) Life cycle impact assessment. Springer Press, Dordrecht, pp 97–113

    Google Scholar 

  • IPCC (2007) Climate change 2007: working group I: the physical science basis. Intergovernmental Panel on Climate Change, Cambridge 1007

  • ISO (2014) International Organization for Standardization (ISO), Environmental management—water footprint—principles, requirements and guidelines. Geneva, Switzerland, International Organization for Standardization, ISO

  • Itsubo N, Inaba A (2010) LIME2: environmental impact assessment methods for decision support JEMAI (in Japanese) ISBN 978–4–86240-055-0 C3051, retrieved from: http://www.bizjemaiorjp/pr/lca_bookshtml

  • Jolliet O, Müller-Wenk R, Bare J, Brent A, Goedkoop M, Heijungs R, Itsubo N, Peña C, Pennington D, Potting J, Rebitzer G, Stewart M, Udo de Haes H, Weidema Bo P (2004) The LCIA midpoint-damage framework of the UNEP-SETAC Life Cycle Initiative. Int J Life Cycle Assess 12(1):394–404

    Article  Google Scholar 

  • Jolliet O, Frischknecht R, Bare J, Boulay A-M, Bulle C, Fantke P, Gheewalaf S, Hauschild M, Itsubo N, Margni M, McKone T, Milà i Canals L, Postuma L, Prado-Lopez V, Ridoutt B, Sonnemann G, Rosenbaum RK, Seager T, Struijs J, van Zelm R, Vigon B, Weisbrod A (2014) Global guidance on environmental life cycle impact assessment indicators: findings of the Glasgow scoping workshop. Int J Life Cycle Assess 19:962–967

    Article  Google Scholar 

  • Joos F, Roth R, Fuglestvedt JS, Peters GP, Enting IG, von Bloh W, Brovkin V, Burke EJ, Eby M, Edwards NR, Friedrich T, Frölicher TL, Halloran PR, Holden PB, Jones C, Kleinen T, Mackenzie F, Matsumoto K, Meinshausen M, Plattner G-K, Reising A, Segschneider J, Shaffer G, Steinacher M, Strassmann K, Tanaka K, Timmermann A, Weaver AJ (2013) Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos Chem Phys 13:2793–2825

    Article  Google Scholar 

  • Koellner T, de Baan L, Beck T, Brandão M, Civit B, Margni M, Milà i Canals L, Saad R, de Souza D, Müller-Wenk R (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services. Int J Life Cycle Assess 18(6):1188–1202

    Article  Google Scholar 

  • Köhler A (2007) Water use in LCA: managing the planet’s freshwater resources. Int J Life Cycle Assess 13:451–455

    Article  Google Scholar 

  • Kounina A, Margni M, Bayart JB, Boulay AM, Berger M, Bulle C, Frischknecht R, Koehler A, Milà i Canals L, Motoshita M, Núñez M, Peters G, Pfister S, Ridoutt B, Zelm R, Verones F, Humbert S (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18(3):707–721

    Article  CAS  Google Scholar 

  • Kounina A, Margni M, Shaked S, Bulle C, Jolliet O (2014) Spatial analysis of toxic emissions in LCA: a sub-continental nested USEtox model with freshwater archetypes. Environ Int 69:67–89

    Article  CAS  Google Scholar 

  • Levasseur A, Cavalett O, Fuglestvedt JS, Gasser T, Johansson DJA, Jørgensen SV, Raugei M, Reisinger A, Schivley G, Størmman A, Tanaka K, Cherubini F (2016) Enhancing life cycle impact assessment from climate science: review of recent findings and recommendations for application to LCA. Ecol Indic 71:163–174

    Article  Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG, Aryee M (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2224–2260

    Article  Google Scholar 

  • MEA (2005) Millennium ecosystem assessment. Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Milà i Canals L, Müller-Wenk R, Bauer C, Depestele J, Dubreuil A, Freiermuth-Knuchel R, Gaillard G, Michelsen O, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5–15

    Article  Google Scholar 

  • Motoshita M, Ono Y, Pfister S, Boulay AM, Berger M, Nansai K, Tahara K, Itsubo N, Inaba A (2014) Consistent characterisation factors at midpoint and endpoint relevant to agricultural water scarcity arising from freshwater consumption. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-014-0811-5

  • Müller Schmied H, Eisner S, Franz D, Wattenbach M, Portmann FT, Flörke M, Döll P (2014) Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol Earth Sys Sci 18(9):3511–3538

    Article  Google Scholar 

  • Murray CJL (1994) Quantifying the burden of disease: the technical basis for disability-adjusted life years. Bul World Health Organ 72(3):429–445

    CAS  Google Scholar 

  • Murray CJ et al (2015) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(10010):2287–2323

    Article  Google Scholar 

  • Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and Natural Radiative Forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, Cambridge University Press, United Kingdom and New York, NY, USA

  • Pastor V, Ludwig F, Biemans H, Hoff H, Kabat P (2014) Accounting for environmental flow requirements in global water assessments. Hydrol Earth Sys Sci 10(12):14987–15032

    Article  Google Scholar 

  • Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43(11):4098–4104

    Article  CAS  Google Scholar 

  • Rosenbaum R, Bachmann T, Gold L, Huijbregts MJ, Jolliet O, Juraske R, Koehler A, Larsen H, MacLeod M, Margni M, McKone T, Payet J, Schuhmacher M, Meent D, Hauschild M (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546

    Article  CAS  Google Scholar 

  • Schmidt JH (2008) Development of LCIA characterisation factors for land use impacts on biodiversity. J Clean Prod 16(18):1929–1942

    Article  Google Scholar 

  • Shine K, Fuglestvedt J, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Chang 68:281–302

    Article  CAS  Google Scholar 

  • Sonderegger T, Dewulf J, Drielsma J, Fantke P, Maia De Souza D, Pfister S, Stössel F, Verones F, Vieira M, Weidema B, Hellweg S (2017) Towards harmonizing natural resources as an area of protection in life cycle impact assessment. Int J Life Cycle Assess 22(12):1912–1927

    Article  Google Scholar 

  • Teixeira R, Maia de Souza D, Curran M, Antón A, Michelsen O, Milà i Canals L (2016) Towards consensus on land use impacts on biodiversity in LCA: UNEP/SETAC Life Cycle Initiative preliminary recommendations based on expert contributions. J Clean Prod 112(5):4283–4287

    Article  CAS  Google Scholar 

  • Udo de Haes HA, Finnveden G, Goedkoop M, Hauschild M, Hertwich E, Hofstetter P, Jolliet O, Klöpffer W, Krewitt W, Lindeijer E, Müller-Wenk R, Olsen S, Pennington D, Potting J, Steen B (2002) Life-cycle impact assessment: striving towards best practice. Society of Environmental Toxicology and Chemistry (SETAC), Brussels

    Google Scholar 

  • United Nations (2015) Resolution adopted by the general assembly on 25 September 2015: transforming our world: the 2030 agenda for sustainable development. United Nations General Assembly, New York

    Google Scholar 

  • Verones F, Hellweg S, Azevedo LB, Chaudhary A, Cosme N, Fantke P, Goedkoop M, Hauschild MZ, Laurent A, Mutel CL, Pfister S, Ponsioen T, Steinmann Z, Van Zelm R, Vieira M, Huijbregts MAJ (2016) LC-IMPACT version 0.5—a spatially differentiated life cycle impact assessment approach. Last accessed 29 November, 2016, from http://www.lc-impact.eu/

  • Verones F, Bare J, Bulle C, Frischknecht R, Hauschild M, Hellweg S, Henderson A, Jolliet O, Laurent A, Liao X, Lindner JP, Maia de Souza D, Michelsen O, Patouillard L, Pfister S, Posthuma L, Prado V, Ridoutt B, Rosenbaum RK, Sala S, Ugaya C, Vieira M, Fantke P (2017) LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. J Clean Prod 161:957–967

    Article  Google Scholar 

  • Westh TB, Hauschild MZ, Birkved M, Jørgensen MS, Rosenbaum RK, Fantke P (2015) The USEtox story: a survey of model developer visions and user requirements. Int J Life Cycle Assess 20:299–310

    Article  Google Scholar 

  • Woods JS, Damiani M, Fantke P, Henderson AD, Johnston JM, Bare J, Sala S, Maia de Souza D, Pfister S, Posthuma L, Rosenbaum RK, Verones F (2017) Ecosystem quality in LCIA: status quo, harmonization, and suggestions for the way forward. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-017-1422-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the UNEP/SETAC Life Cycle Initiative and its sponsors for funding this activity and the contributions from the additional participants to the Pellston Workshop™ (PW) and to the LCIA guidance Task Forces (TF).

Crosscutting issues and framework: (PW) Stefanie Hellweg, Andrew D. Henderson, Alexis Laurent, Brad Ridoutt, Cassia Ugaya; (TF) Jane Bare, Alya Bolowich, Mattia Damiani, Jo Dewulf, Chris Koffler, Jan Paul Lindner, Xun Liao, Danielle Maia de Souza, Chris Mutel, Laure Patouillard, Massimo Pizzol, Leo Posthuma, Tommie Ponsioen, Valentina Prado, Ralph Rosenbaum, Serenella Sala, Thomas Sonderegger, Franziska Stössel, Marisa Vieira, Bo Weidema, John S. Woods.

Climate change impacts: (PW) An de Schryver, Michael Hauschild, Yuki Kabe, Abdelhadi Sahnoune, Katsumasa Tanaka; (TF) Otávio Cavalett, Jan S. Fuglestvedt, Thomas Gasser, Mark A.J. Huijbregts, Daniel J.A. Johansson, Susanne V. Jørgensen, Marco Raugei, Andy Reisinger, Greg Schivley, Anders H. Strømman.

Fine particulate matter health impacts: (PW) Joshua Apte, John Evans, Natasha Hodas, Matti Jantunen; (TF) Deborah Bennett, Otto Hänninen, Jonathan Levy, Dingsheng Li, Paul J. Lioy, Miranda Loh, Detelin Markov, Julian Marshall, Philipp Preiss, Hyeong-Moo Shin, Joseph Spadaro, Katerina Stylianou, Marko Tainio, Jouni T. Tuomisto, Charles J. Weschler.

Water use impacts: (PW) Lorenzo Benini, Shabbir H. Gheewala, Maria Clea Brito de Figueiredo, Kevin Harding, Urs Schenker; (TF) Jane Bare, Markus Berger, Cécile Bulle, Michael J. Lathuillière, Alessandro Manzardo, Manuele Margni, Montserrat Núñez, Amandine Valerie Pastor, Taikan Oki, Sebastien Worbe.

Land use impacts on biodiversity: (PW) Christian Bauer, Camillo de Camillis, Ruth Freiermuth Knuchel, Tim Grant, Ottar Michelsen, Martha Stevenson; (TF) Béatrice Bellini, Sharon Brooks, Jasmina Burek, Abhishek Chaudhary, Carla Coelho, Michael Curran, Maria Cléa Brito de Figueirêdo, Danielle Maia de Souza, Pieter Elshout, Simone Fazio, Jan Paul Lindner, William Puttman, Eugenie Regan, Serenella Sala, Félix Teillard, Ricardo F. M. Teixeira, Greg Thoma, Beatriz Vidal-Legaz, Matt Walpole.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Jolliet.

Additional information

Responsible editor: Michael Z. Hauschild

Electronic supplementary material

ESM 1

(DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jolliet, O., Antón, A., Boulay, AM. et al. Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use. Int J Life Cycle Assess 23, 2189–2207 (2018). https://doi.org/10.1007/s11367-018-1443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-018-1443-y

Keywords

Navigation