Skip to main content

Advertisement

Log in

Evaluating osteoporosis and bone quality in the aging spine: modern considerations for surgical management in the geriatric population

  • REVIEW
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Surgical management paradigms of spinal pathologies in the aging population carry inherent substantial risks, with surgical complications being more prevalent among patients with osteoporosis compared to those with normal bone mineral density. In this narrative review, we aim to highlight important clinical understanding and considerations in perioperative evaluation and management of patients elected to undergo spinal surgery. Osteoporosis is a well-defined risk factor for mechanical complications following spinal surgery, and as such, perioperative optimization of bone health in the setting of surgery for geriatric patients remains a critical research area alongside intraoperative surgical augmentation techniques. Surgical techniques to circumvent challenges with instrumentation of poor bone mineral density have included augmentation of pedicle screw fixation, including segmental bicortical screw fixation techniques, cement augmentation with fenestrated screws, or use of expandable pedicle screws to improve bone-implant interface. Judicious selection of treatment modalities and subsequent perioperative optimization is paramount to minimize surgical complications. Contemporary guidelines and evolving paradigms in perioperative evaluation, optimization, and management of the aging spine include the advent of quantitatively evaluating computed tomography (CT) via assessment of the magnitude of Hounsfield units. Prescribing pharmacotherapeutic agents and monitoring bone health requires a multidisciplinary team approach, including endocrinologists and geriatricians to coordinate high-quality care for advanced-age patients who require surgical management of their spinal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nguyen ND, Ahlborg HG, Center JR, Eisman JA, Nguyen TV. Residual lifetime risk of fractures in women and men. J Bone Miner Res. 2007;22(6):781–8. https://doi.org/10.1359/jbmr.070315.

    Article  PubMed  Google Scholar 

  2. Randell AG, Nguyen TV, Bhalerao N, Silverman SL, Sambrook PN, Eisman JA. Deterioration in quality of life following hip fracture: a prospective study. Osteoporos Int. 2000;11(5):460–6. https://doi.org/10.1007/s001980070115.

    Article  CAS  PubMed  Google Scholar 

  3. Block JE, Stubbs H. Hip fracture-associated mortality reconsidered. Calcif Tissue Int. 1997;61(1):84–84. https://doi.org/10.1007/s002239900300.

    Article  CAS  PubMed  Google Scholar 

  4. Kanis JA, Oden A, Johansson H, Borgström F, Ström O, McCloskey E. FRAX and its applications to clinical practice. Bone. 2009;44(5):734–43. https://doi.org/10.1016/j.bone.2009.01.373.

    Article  PubMed  Google Scholar 

  5. DeWald CJ, Stanley T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine (Phila Pa 1976). 2006;31(19 Suppl):S144-51. https://doi.org/10.1097/01.brs.0000236893.65878.39.

    Article  PubMed  Google Scholar 

  6. Mohanty S, Sardar ZM, Hassan FM, Lombardi JM, Lehman RA, Lenke LG. Impact of teriparatide on complications and patient-reported outcomes of patients undergoing long spinal fusion according to bone density. J Bone Joint Surg. 2024;106(3):206–17. https://doi.org/10.2106/JBJS.23.00272.

    Article  PubMed  Google Scholar 

  7. Varshneya K, Bhattacharjya A, Jokhai RT, et al. The impact of osteoporosis on adult deformity surgery outcomes in Medicare patients. Eur Spine J. 2022;31(1):88–94. https://doi.org/10.1007/s00586-021-06985-z.

    Article  PubMed  Google Scholar 

  8. Shahrestani S, Chen XT, Ballatori AM, et al. Complication trends and costs of surgical management in 11,086 osteoporotic patients receiving lumbar fusion. Spine (Phila Pa 1976). 2021;46(21):1478–84. https://doi.org/10.1097/BRS.0000000000004051.

    Article  PubMed  Google Scholar 

  9. Beckerman D, Esparza M, Lee SI, et al. Cost analysis of single-level lumbar fusions. Global Spine J. 2020;10(1):39–46. https://doi.org/10.1177/2192568219853251.

    Article  PubMed  Google Scholar 

  10. Jain N, Labaran L, Phillips FM, et al. Prevalence of osteoporosis treatment and its effect on post-operative complications, revision surgery and costs after multi-level spinal fusion. Global Spine J. 2022;12(6):1119–24. https://doi.org/10.1177/2192568220976560.

    Article  PubMed  Google Scholar 

  11. Brown JP, Josse RG, Scientific Advisory Council of the Osteoporosis Society of Canada. 2002 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada. CMAJ. 2002;167(10 suppl):S1–34.

    PubMed  PubMed Central  Google Scholar 

  12. Anderson PA, Morgan SL, Krueger D, et al. Use of bone health evaluation in orthopedic surgery: 2019 ISCD official position. J Clin Densitom. 2019;22(4):517–43. https://doi.org/10.1016/j.jocd.2019.07.013.

    Article  PubMed  Google Scholar 

  13. Sardar ZM, Coury JR, Cerpa M, et al. Best practice guidelines for assessment and management of osteoporosis in adult patients undergoing elective spinal reconstruction. Spine (Phila Pa 1976). 2022;47(2):128–35. https://doi.org/10.1097/BRS.0000000000004268.

    Article  PubMed  Google Scholar 

  14. Blake GM, Fogelman I. Technical principles of dual energy x-ray absorptiometry. Semin Nucl Med. 1997;27(3):210–28. https://doi.org/10.1016/s0001-2998(97)80025-6.

    Article  CAS  PubMed  Google Scholar 

  15. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9. https://doi.org/10.1136/bmj.312.7041.1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kanis JA, Johnell O, Oden A, Jonsson B, De Laet C, Dawson A. Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis. Bone. 2000;27(5):585–90. https://doi.org/10.1016/s8756-3282(00)00381-1.

    Article  CAS  PubMed  Google Scholar 

  17. Looker AC, Orwoll ES, Johnston CC, et al. Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res. 1997;12(11):1761–8. https://doi.org/10.1359/jbmr.1997.12.11.1761.

    Article  CAS  PubMed  Google Scholar 

  18. McKiernan FE, Berg RL, Linneman JG. The utility of BMD Z-score diagnostic thresholds for secondary causes of osteoporosis. Osteoporos Int. 2011;22(4):1069–77. https://doi.org/10.1007/s00198-010-1307-1.

    Article  CAS  PubMed  Google Scholar 

  19. Yu JS, Krishna NG, Fox MG, et al. ACR Appropriateness Criteria® osteoporosis and bone mineral density: 2022 update. J Am Coll Radiol. 2022;19(11):S417–32. https://doi.org/10.1016/j.jacr.2022.09.007.

    Article  PubMed  Google Scholar 

  20. Schreiber JJ, Anderson PA, Rosas HG, Buchholz AL, Au AG. Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Joint Surg. 2011;93(11):1057–63. https://doi.org/10.2106/JBJS.J.00160.

    Article  PubMed  Google Scholar 

  21. Ahern DP, McDonnell JM, Riffault M, et al. A meta-analysis of the diagnostic accuracy of Hounsfield units on computed topography relative to dual-energy X-ray absorptiometry for the diagnosis of osteoporosis in the spine surgery population. Spine J. 2021;21(10):1738–49. https://doi.org/10.1016/j.spinee.2021.03.008.

    Article  PubMed  Google Scholar 

  22. Patel SP, et al. Normative vertebral hounsfield unit values and correlation with bone mineral density. J Clin Exp Orthop. 2016;2:14. https://doi.org/10.4172/2471-8416.100014.

    Article  Google Scholar 

  23. Gregson CL, Hardcastle SA, Cooper C, Tobias JH. Friend or foe: high bone mineral density on routine bone density scanning, a review of causes and management. Rheumatology (United Kingdom). 2013;52(6):968–85. https://doi.org/10.1093/rheumatology/ket007.

    Article  CAS  Google Scholar 

  24. Wähnert D, Frank A, Ueberberg J, Heilmann LF, Sauzet O, Raschke MJ, Gehweiler D. Development and first biomechanical validation of a score to predict bone implant interface stability based on clinical qCT scans. Sci Rep. 2021;11(1):3273. https://doi.org/10.1038/s41598-021-82788-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boonen S, Lips P, Bouillon R, Bischoff-Ferrari HA, Vanderschueren D, Haentjens P. Need for additional calcium to reduce the risk of hip fracture with vitamin D supplementation: evidence from a comparative metaanalysis of randomized controlled trials. J Clin Endocrinol Metab. 2007;92(4):1415–23. https://doi.org/10.1210/jc.2006-1404.

    Article  CAS  PubMed  Google Scholar 

  26. Mikosch P. Alcohol and bone. Wien Med Wochenschr. 2014;164(1–2):15–24. https://doi.org/10.1007/s10354-013-0258-5.

    Article  PubMed  Google Scholar 

  27. Krall EA, Dawson-Hughes B. Smoking increases bone loss and decreases intestinal calcium absorption. J Bone Miner Res. 1999;14(2):215–20. https://doi.org/10.1359/jbmr.1999.14.2.215.

    Article  CAS  PubMed  Google Scholar 

  28. Pouresmaeili F, Kamalidehghan B, Kamarehei M, Goh YM. A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag. 2018;14:2029–49. https://doi.org/10.2147/TCRM.S138000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lehman RA, Kang DG, Wagner SC. Management of osteoporosis in spine surgery. J Am Acad Orthop Surg. 2015;23(4):253–63. https://doi.org/10.5435/JAAOS-D-14-00042.

    Article  PubMed  Google Scholar 

  30. Miyauchi A, Matsumoto T, Sugimoto T, Tsujimoto M, Warner MR, Nakamura T. Effects of teriparatide on bone mineral density and bone turnover markers in Japanese subjects with osteoporosis at high risk of fracture in a 24-month clinical study: 12-month, randomized, placebo-controlled, double-blind and 12-month open-label phases. Bone. 2010;47(3):493–502. https://doi.org/10.1016/j.bone.2010.05.022.

    Article  CAS  PubMed  Google Scholar 

  31. Dimar J, Bisson EF, Dhall S, et al. Congress of neurological surgeons systematic review and evidence-based guidelines for perioperative spine: preoperative osteoporosis assessment. Neurosurgery. 2021;89:S19–25. https://doi.org/10.1093/neuros/nyab317.

    Article  PubMed  Google Scholar 

  32. LeBoff MS, Greenspan SL, Insogna KL, et al. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2022;33(10):2049–102. https://doi.org/10.1007/s00198-021-05900-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, Kuniyoshi K, Aoki Y, Nakamura J, Ishikawa T, Miyagi M, Kamoda H, Suzuki M, Kubota G, Sakuma Y, Oikawa Y, Inage K, Sainoh T, Takaso M, Ozawa T, Takahashi K, Toyone T. Teriparatide accelerates lumbar posterolateral fusion in women with postmenopausal osteoporosis: prospective study. Spine (Phila Pa 1976). 2012;37(23):E1464-8. https://doi.org/10.1097/BRS.0b013e31826ca2a8.

    Article  PubMed  Google Scholar 

  34. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, Kuniyoshi K, Aoki Y, Nakamura J, Ishikawa T, Miyagi M, Kamoda H, Suzuki M, Kubota G, Sakuma Y, Oikawa Y, Inage K, Sainoh T, Takaso M, Toyone T, Takahashi K. Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine (Phila Pa 1976). 2013;38(8):E487–92. https://doi.org/10.1097/BRS.0b013e31828826dd.

    Article  PubMed  Google Scholar 

  35. Nagahama K, Kanayama M, Togawa D, Hashimoto T, Minami A. Does alendronate disturb the healing process of posterior lumbar interbody fusion? A prospective randomized trial. J Neurosurg Spine. 2011;14(4):500–7. https://doi.org/10.3171/2010.11.SPINE10245.

    Article  PubMed  Google Scholar 

  36. Ebata S, Takahashi J, Hasegawa T, et al. Role of weekly teriparatide administration in osseous union enhancement within six months after posterior or transforaminal lumbar interbody fusion for osteoporosis-associated lumbar degenerative disorders: a multicenter, prospective randomized study. J Bone Joint Surg Am. 2017;99(5):365–72. https://doi.org/10.2106/JBJS.16.00230.

    Article  PubMed  Google Scholar 

  37. Murphy DR, Smolen LJ, Klein TM, Klein RW. The cost effectiveness of teriparatide as a first-line treatment for glucocorticoid-induced and postmenopausal osteoporosis patients in Sweden. BMC Musculoskelet Disord. 2012;13:213. https://doi.org/10.1186/1471-2474-13-213.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim SM, Rhee W, Ha S, Lim JH, Jang IT. Influence of alendronate and endplate degeneration to single level posterior lumbar spinal interbody fusion. Korean J Spine. 2014;11(4):221. https://doi.org/10.14245/kjs.2014.11.4.221.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li Y, Yan L, Cai S, Wang P, Zhuang H, Yu H. The prevalence and under-diagnosis of vertebral fractures on chest radiograph. BMC Musculoskelet Disord. 2018;19(1):235. https://doi.org/10.1186/s12891-018-2171-y.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Watts NB, Harris ST, Genant HK. Treatment of painful osteoporotic vertebral fractures with percutaneous vertebroplasty or kyphoplasty. Osteoporos Int. 2001;12(6):429–37. https://doi.org/10.1007/s001980170086.

    Article  CAS  PubMed  Google Scholar 

  41. Kallmes DF, Jensen ME. Percutaneous vertebroplasty. Radiology. 2003;229(1):27–36. https://doi.org/10.1148/radiol.2291020222.

    Article  PubMed  Google Scholar 

  42. Hirsch JA, Chandra RV, Carter NS, Beall D, Frohbergh M, Ong K. Number needed to treat with vertebral augmentation to save a life. Am J Neuroradiol. 2020;41(1):178–82. https://doi.org/10.3174/ajnr.A6367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Comstock BA, Sitlani CM, Jarvik JG, Heagerty PJ, Turner JA, Kallmes DF. Investigational Vertebroplasty Safety and Efficacy Trial (INVEST): patient-reported outcomes through 1 year. Radiology. 2013;269(1):224–31. https://doi.org/10.1148/radiol.13120821.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Buchbinder R, Osborne RH, Ebeling PR, Wark JD, Mitchell P, Wriedt C, Graves S, Staples MP, Murphy B. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med. 2009;361(6):557–68. https://doi.org/10.1056/NEJMoa0900429.

    Article  CAS  PubMed  Google Scholar 

  45. Buchbinder R, Johnston RV, Rischin KJ, et al. Percutaneous vertebroplasty for osteoporotic vertebral compression fracture. Cochrane Database Syst Rev. 2018. https://doi.org/10.1002/14651858.CD006349.pub3.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Evans AJ, Kip KE, Brinjikji W, et al. Randomized controlled trial of vertebroplasty versus kyphoplasty in the treatment of vertebral compression fractures. J Neurointerv Surg. 2016;8(7):756–63. https://doi.org/10.1136/neurintsurg-2015-011811.

    Article  PubMed  Google Scholar 

  47. Imamudeen N, Basheer A, Iqbal AM, Manjila N, Haroon NN, Manjila S. Management of osteoporosis and spinal fractures: contemporary guidelines and evolving paradigms. Clin Med Res. 2022;20(2):95–106. https://doi.org/10.3121/cmr.2021.1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Okuda S, Oda T, Miyauchi A, Haku T, Yamamoto T, Iwasaki M. Surgical outcomes of posterior lumbar interbody fusion in elderly patients. J Bone Joint Surg Am. 2006;88(12):2714–20. https://doi.org/10.2106/JBJS.F.00186.

    Article  PubMed  Google Scholar 

  49. Yagi M, Fujita N, Tsuji O, et al. Low bone-mineral density is a significant risk for proximal junctional failure after surgical correction of adult spinal deformity. Spine (Phila Pa 1976). 2018;43(7):485–91. https://doi.org/10.1097/BRS.0000000000002355.

    Article  PubMed  Google Scholar 

  50. Sakai Y, Takenaka S, Matsuo Y, et al. Hounsfield unit of screw trajectory as a predictor of pedicle screw loosening after single level lumbar interbody fusion. J Orthop Sci. 2018;23(5):734–8. https://doi.org/10.1016/j.jos.2018.04.006.

    Article  PubMed  Google Scholar 

  51. Cho JH, Hwang CJ, Kim H, Joo YS, Lee DH, Lee CS. Effect of osteoporosis on the clinical and radiological outcomes following one-level posterior lumbar interbody fusion. J Orthop Sci. 2018;23(6):870–7. https://doi.org/10.1016/j.jos.2018.06.009.

    Article  PubMed  Google Scholar 

  52. Dodwad SNM, Khan SN. Surgical stabilization of the spine in the osteoporotic patient. Orthop Clin North Am. 2013;44(2):243–9. https://doi.org/10.1016/j.ocl.2013.01.008.

    Article  PubMed  Google Scholar 

  53. Takeuchi T, Yamagishi K, Konishi K, Sano H, Takahashi M, Ichimura S, Kono H, Hasegawa M, Hosogane N. Radiological evaluation of combined anteroposterior fusion with vertebral body replacement using a minimally invasive lateral approach for osteoporotic vertebral fractures: Verification of optimal surgical procedure. J Clin Med. 2022;11(3):629. https://doi.org/10.3390/jcm11030629.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hu SS. Internal fixation in the osteoporotic spine. Spine (Phila Pa 1976). 1997;22(24 Suppl):43S-48S. https://doi.org/10.1097/00007632-199712151-00008.

    Article  CAS  PubMed  Google Scholar 

  55. Sudo H, Ito M, Kaneda K, et al. Anterior decompression and strut graft versus posterior decompression and pedicle screw fixation with vertebroplasty for osteoporotic thoracolumbar vertebral collapse with neurologic deficits. Spine J. 2013;13(12):1726–32. https://doi.org/10.1016/j.spinee.2013.05.041.

    Article  PubMed  Google Scholar 

  56. Wind J, Park D, Lansford T, et al. Twelve-month results from a prospective clinical study evaluating the efficacy and safety of cellular bone allograft in subjects undergoing lumbar spinal fusion. Neurol Int. 2022;14(4):875–83. https://doi.org/10.3390/neurolint14040070.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Park JJ, Hershman SH, Kim YH. Updates in the use of bone grafts in the lumbar spine. Bull Hosp Jt Dis. 2013;71(1):39–48.

    Google Scholar 

  58. Zhang W, Luo Y, Xu J, Guo C, Shi J, Li L, Sun X, Kong Q. The possible role of electrical stimulation in osteoporosis: A narrative review. Medicina (Kaunas). 2023;59(1):121. https://doi.org/10.3390/medicina59010121.

    Article  PubMed  Google Scholar 

  59. Androjna C, Fort B, Zborowski M, Midura RJ. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture. Bioelectromagnetics. 2014;35(6):396–405. https://doi.org/10.1002/bem.21855.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miles Hudson.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudson, M., Meyer, J., Evans, A. et al. Evaluating osteoporosis and bone quality in the aging spine: modern considerations for surgical management in the geriatric population. GeroScience (2024). https://doi.org/10.1007/s11357-024-01171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01171-7

Keywords

Navigation