Skip to main content
Log in

Repetitive element transcript accumulation is associated with inflammaging in humans

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Chronic, low-grade inflammation increases with aging, contributing to functional declines and diseases that reduce healthspan. Growing evidence suggests that transcripts from repetitive elements (RE) in the genome contribute to this “inflammaging” by stimulating innate immune activation, but evidence of RE-associated inflammation with aging in humans is limited. Here, we present transcriptomic and clinical data showing that RE transcript levels are positively related to gene expression of innate immune sensors, and to serum interleukin 6 (a marker of systemic inflammation), in a large group of middle-aged and older adults. We also: (1) use transcriptomics and whole-genome bisulfite (methylation) sequencing to show that many RE may be hypomethylated with aging, and that aerobic exercise, a healthspan-extending intervention, reduces RE transcript levels and increases RE methylation in older adults; and (2) extend our findings in a secondary dataset demonstrating age-related changes in RE chromatin accessibility. Collectively, our data support the idea that age-related RE transcript accumulation may play a role in inflammaging in humans, and that RE dysregulation with aging may be due in part to upstream epigenetic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Additional data supporting the present findings are presented in the Supplementary Data file, and raw RNA-seq and WGBS data are available on the NCBI Gene Expression Omnibus website (GEO accession number GSE263013).

References

  1. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012;22:R741-752. https://doi.org/10.1016/j.cub.2012.07.024.

    Article  CAS  PubMed  Google Scholar 

  2. Santoro A, et al. Inflammaging, hormesis and the rationale for anti-aging strategies. Ageing Res Rev. 2020;64:101142. https://doi.org/10.1016/j.arr.2020.101142.

    Article  CAS  PubMed  Google Scholar 

  3. Shokhirev MN, Johnson AA. Modeling the human aging transcriptome across tissues, health status, and sex. Aging Cell. 2021;20:e13280. https://doi.org/10.1111/acel.13280.

    Article  CAS  PubMed  Google Scholar 

  4. Bourque G, et al. Ten things you should know about transposable elements. Genome Biol. 2018;19:199. https://doi.org/10.1186/s13059-018-1577-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gorbunova V, et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021;596:43–53. https://doi.org/10.1038/s41586-021-03542-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wahl D, Cavalier AN, Smith M, Seals DR, LaRocca TJ. Healthy aging interventions reduce repetitive element transcripts. J Gerontol A Biol Sci Med Sci. 2020;76(5):805–10. https://doi.org/10.1093/gerona/glaa302.

    Article  CAS  PubMed Central  Google Scholar 

  7. LaRocca TJ, Cavalier AN, Wahl D. Repetitive elements as a transcriptomic marker of aging: evidence in multiple datasets and models. Aging Cell. 2020;19:e13167. https://doi.org/10.1111/acel.13167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Cecco M, et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell. 2013;12:247–56. https://doi.org/10.1111/acel.12047.

    Article  CAS  PubMed  Google Scholar 

  9. Kreiling JA, Jones BC, Wood JG, De Cecco M, Criscione SW, Neretti N, et al. Contribution of retrotransposable elements to aging. In: Cristofari G, editor., et al., Human Retrotransposons in Health and Disease. Cham: Springer International Publishing; 2017. p. 297–321.

    Chapter  Google Scholar 

  10. De Cecco M, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 2019;566:73–8. https://doi.org/10.1038/s41586-018-0784-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goodier JL. Restricting retrotransposons: a review. Mob. DNA. 2016;7:16. https://doi.org/10.1186/s13100-016-0070-z.

    Article  Google Scholar 

  12. Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet. 2019;20:657–74. https://doi.org/10.1038/s41576-019-0151-1.

    Article  CAS  PubMed  Google Scholar 

  13. Chen YG, Hur S. Cellular origins of dsRNA, their recognition and consequences. Nat Rev Mol Cell Biol. 2022;23:286–301. https://doi.org/10.1038/s41580-021-00430-1.

    Article  CAS  PubMed  Google Scholar 

  14. Ahmad S, et al. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell. 2018;172(797–810):e713. https://doi.org/10.1016/j.cell.2017.12.016.

    Article  CAS  Google Scholar 

  15. Soto-Palma C, Niedernhofer LJ, Faulk CD, Dong X. Epigenetics, DNA damage, and aging. J Clin Invest. 2022;132(16). https://doi.org/10.1172/JCI158446.

  16. Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. DNA damage-how and why we age? Elife. 2021;10. https://doi.org/10.7554/eLife.62852.

  17. Chen H, Zheng X, Xiao D, Zheng Y. Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence. Aging Cell. 2016;15:542–52. https://doi.org/10.1111/acel.12465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Patchsung M, et al. Alu siRNA to increase Alu element methylation and prevent DNA damage. Epigenomics. 2018;10:175–85. https://doi.org/10.2217/epi-2017-0096.

    Article  CAS  PubMed  Google Scholar 

  19. Alemán H, Esparza J, Ramirez FA, Astiazaran H, Payette H. Longitudinal evidence on the association between interleukin-6 and C-reactive protein with the loss of total appendicular skeletal muscle in free-living older men and women. Age and Ageing. 2011;40:469–75. https://doi.org/10.1093/ageing/afr040.

    Article  PubMed  Google Scholar 

  20. Varadhan R, et al. Simple biologically informed inflammatory index of two serum cytokines predicts 10 year all-cause mortality in older adults. J Gerontol A Biol Sci Med Sci. 2014;69:165–73. https://doi.org/10.1093/gerona/glt023.

    Article  CAS  PubMed  Google Scholar 

  21. Van Epps P, et al. Frailty has a stronger association with inflammation than age in older veterans. Immun Ageing. 2016;13:27. https://doi.org/10.1186/s12979-016-0082-z.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Puzianowska-Kuznicka M, et al. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun Ageing. 2016;13:21. https://doi.org/10.1186/s12979-016-0076-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Santos-Parker JR, et al. Curcumin supplementation and motor-cognitive function in healthy middle-aged and older adults. Nutr Healthy Aging. 2018;4:323–33. https://doi.org/10.3233/NHA-170029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rossman MJ, et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension. 2018;71:1056–63. https://doi.org/10.1161/HYPERTENSIONAHA.117.10787.

    Article  CAS  PubMed  Google Scholar 

  25. Martens CR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy middle-aged and older adults. Nat Commun. 2018;9:1286. https://doi.org/10.1038/s41467-018-03421-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martens CR, et al. Short-term time-restricted feeding is safe and feasible in non-obese healthy midlife and older adults. Geroscience. 2020;42:667–86. https://doi.org/10.1007/s11357-020-00156-6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kaplon RE, Hill SD, Bispham NZ, Santos-Parker JR, Nowlan MJ, Snyder LL, et al. Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults. Aging. 2016;8(6):1167–83. https://doi.org/10.18632/aging.100962.

    Article  PubMed  PubMed Central  Google Scholar 

  28. DeVan AE, et al. Effects of sodium nitrite supplementation on vascular function and related small metabolite signatures in middle-aged and older adults. J Appl Physiol. 2015;4:416–25.

    Google Scholar 

  29. Martin-Willett R, et al. Few structural brain changes associated with moderate-intensity interval training and low-intensity continuous training in a randomized trial of fitness and older adults. J Aging Phys Act. 2021;29:505–15. https://doi.org/10.1123/japa.2019-0352.

    Article  PubMed  Google Scholar 

  30. Martin-Willett R, et al. The influence of a 16-week exercise program, APOE status, and age on executive function task performance: a randomized trial. Exp Gerontol. 2021;152:111431. https://doi.org/10.1016/j.exger.2021.111431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weintraub S, et al. Cognition assessment using the NIH toolbox. Am Acad Neurol. 2013;3:54–64.

    Google Scholar 

  32. Reuben DB, et al. Motor assessment using the NIH toolbox. Am Acad Neurol. 2013;3:65–75.

    Google Scholar 

  33. Christou DD, Seals DR. Decreased maximal heart rate with aging is related to reduced B-adrenergic responsiveness but is largely explained by a reduction in intrinsic heart rate. J Appl Physiol. 1985;1:24–9.

    Google Scholar 

  34. Wahl D, Smith ME, McEntee CM, Cavalier AN, Osburn SC, Burke SD, et al. The reverse transcriptase inhibitor 3TC protects against age-related cognitive dysfunction. Aging Cell. 2023;22(5):e13798. https://doi.org/10.1111/acel.13798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin Y, Tam OH, Paniagua E, Hammell M. TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics. 2015;31:3593–9. https://doi.org/10.1093/bioinformatics/btv422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Criscione SW, Zhang Y, Thompson W, Sedivy JM, Neretti N. Transcriptional landscape of repetitive elements in normal and cancer human cells. BMC Genomics. 2014;15(1):583.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dobin A, Gingeras TR. Mapping RNA-seq reads with STAR. Curr Protoc Bioinformatics. 2015;51(1):11.4.1-4.9. https://doi.org/10.1002/0471250953.bi1114s51.

    Article  Google Scholar 

  38. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Raudvere U, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191–8. https://doi.org/10.1093/nar/gkz369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carlson M. GO.db: A set of annotation maps describing the entire Gene Ontology. R package version 3.8.2.2019.

  41. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.

    Article  CAS  Google Scholar 

  42. de SenaBrandine G, Smith AD. Fast and memory-efficient mapping of short bisulfite sequencing reads using a two-letter alphabet. NAR Genom Bioinform. 2021;3:lqab115. https://doi.org/10.1093/nargab/lqab115.

    Article  CAS  Google Scholar 

  43. Song Q, et al. A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLoS One. 2013;8:e81148. https://doi.org/10.1371/journal.pone.0081148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ucar D, et al. The chromatin accessibility signature of human immune aging stems from CD8(+) T cells. J Exp Med. 2017;214:3123–44. https://doi.org/10.1084/jem.20170416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gaspar JM. Genrich: detecting sites of genomic enrichment. GitHub repository2018.

  46. Johnson LC, et al. The plasma metabolome as a predictor of biological aging in humans. Geroscience. 2019;41:895–906. https://doi.org/10.1007/s11357-019-00123-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Johnson LC, et al. Amino acid and lipid associated plasma metabolomic patterns are related to healthspan indicators with ageing. Clin Sci (Lond). 2018;132:1765–77. https://doi.org/10.1042/cs20180409.

    Article  CAS  PubMed  Google Scholar 

  48. Havecker ER, Gao X, Voytas DF. The diversity of LTR retrotransposons. Genome Biol. 2004;5(6):225.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu X, et al. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell. 2023;186(287–304):e226. https://doi.org/10.1016/j.cell.2022.12.017.

    Article  CAS  Google Scholar 

  50. Swanson EC, Manning B, Zhang H, Lawrence JB. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J Cell Biol. 2013;203:929–42. https://doi.org/10.1083/jcb.201306073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rostami MR, Bradic M. The derepression of transposable elements in lung cells is associated with the inflammatory response and gene activation in idiopathic pulmonary fibrosis. Mob DNA. 2021;12:14. https://doi.org/10.1186/s13100-021-00241-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cuevas RA, et al. MOV10 provides antiviral activity against RNA viruses by enhancing RIG-I-MAVS-independent IFN induction. J Immunol. 2016;196:3877–86. https://doi.org/10.4049/jimmunol.1501359.

    Article  CAS  PubMed  Google Scholar 

  53. Gasior SL, Wakeman TP, Xu B, Deininger PL. The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol. 2006;357:1383–93. https://doi.org/10.1016/j.jmb.2006.01.089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hancks DC, Kazazian HH Jr. Roles for retrotransposon insertions in human disease. Mob DNA. 2016;7:9. https://doi.org/10.1186/s13100-016-0065-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dabo S, Meurs EF. dsRNA-dependent protein kinase PKR and its role in stress, signaling and HCV infection. Viruses. 2012;4:2598–635. https://doi.org/10.3390/v4112598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carter AC, et al. Challenges and recommendations for epigenomics in precision health. Nat Biotechnol. 2017;35:1128–32. https://doi.org/10.1038/nbt.4030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bouchard C, Rankinen T, Timmons JA. Genomics and genetics in the biology of adaptation to exercise. Compr Physiol. 2011;1:1603–48. https://doi.org/10.1002/cphy.c100059.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Skinner JS, Jaskolski A, Saskolska A, Krasnoff J, Gagnon J, Leon AS, Rao DC, Wilmore JH, Bouchard C. Age, sex, race, initial fitness, and response to training: the HERITAGE Family Study. J Appl Physool. 2001;90:1770–6.

    CAS  Google Scholar 

  59. Lavin KM, et al. State of knowledge on molecular adaptations to exercise in humans: historical perspectives and future directions. Compr Physiol. 2022;12:3193–279. https://doi.org/10.1002/cphy.c200033.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gal-Ben-Ari S, Barrera I, Ehrlich M, Rosenblum K. PKR: a kinase to remember. Front Mol Neurosci. 2018;11:480. https://doi.org/10.3389/fnmol.2018.00480.

    Article  CAS  PubMed  Google Scholar 

  61. Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet. 2003;35:41–8. https://doi.org/10.1038/ng1223.

    Article  CAS  PubMed  Google Scholar 

  62. Simon M, et al. LINE1 Derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab. 2019;29(871–885):e875. https://doi.org/10.1016/j.cmet.2019.02.014.

    Article  CAS  Google Scholar 

  63. Deininger P. Alu elements: know the SINEs. Genome Biology. 2011;12(12):236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heinrich MJ, et al. Endogenous double-stranded Alu RNA elements stimulate IFN-responses in relapsing remitting multiple sclerosis. J Autoimmun. 2019;100:40–51. https://doi.org/10.1016/j.jaut.2019.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14:576–90. https://doi.org/10.1038/s41574-018-0059-4.

    Article  CAS  PubMed  Google Scholar 

  66. Del Giudice M, Gangestad SW. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav Immun. 2018;70:61–75. https://doi.org/10.1016/j.bbi.2018.02.013.

    Article  CAS  PubMed  Google Scholar 

  67. Barrios MH, Garnham AL, Foers AD, Cheng-Sim L, Masters SL, Pang KC. Small extracellular vesicle enrichment of a retrotransposon-derived double-stranded RNA: a means to avoid autoinflammation? Biomedicines. 2021;9(9):1136. https://doi.org/10.3390/biomedicines9091136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kouwaki T, Okamoto M, Tsukamoto H, Fukushima Y, Oshiumi H. Extracellular vesicles deliver host and virus RNA and regulate innate immune response. Int J Mol Sci. 2017;18(3):666. https://doi.org/10.3390/ijms18030666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaul T, Morales ME, Sartor AO, Belancio VP, Deininger P. Comparative analysis on the expression of L1 loci using various RNA-Seq preparations. Mob DNA. 2020;11:2. https://doi.org/10.1186/s13100-019-0194-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37. https://doi.org/10.1038/nri2873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Garatachea N, et al. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 2015;18:57–89. https://doi.org/10.1089/rej.2014.1623.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rebelo-Marques A, et al. Aging hallmarks: the benefits of physical exercise. Front Endocrinol (Lausanne). 2018;9:258. https://doi.org/10.3389/fendo.2018.00258.

    Article  PubMed  Google Scholar 

  73. Gleeson M, et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11:607–15. https://doi.org/10.1038/nri3041.

    Article  CAS  PubMed  Google Scholar 

  74. Pedersen BK. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest. 2017;47:600–11. https://doi.org/10.1111/eci.12781.

    Article  CAS  PubMed  Google Scholar 

  75. Lemaire PA, Anderson E, Lary J, Cole JL. Mechanism of PKR Activation by dsRNA. J Mol Biol. 2008;381:351–60. https://doi.org/10.1016/j.jmb.2008.05.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fulop T, Larbi A, Hirokawa K, Cohen AA, Witkowski JM. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin Immunopathol. 2020;42:521–36. https://doi.org/10.1007/s00281-020-00818-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cui F, Sirotin MV, Zhurkin VB. Impact of Alu repeats on the evolution of human p53 binding sites. Biol Direct. 2011;6:2. https://doi.org/10.1186/1745-6150-6-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Levine AJ. The p53 protein plays a central role in the mechanism of action of epigentic drugs that alter the methylation of cytosine residues in DNA. Oncotarget. 2017;8:7228–30. https://doi.org/10.18632/oncotarget.14805.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tiwari B, Jones AE, Abrams JM. Transposons, p53 and genome security. Trends Genet. 2018;34:846–55. https://doi.org/10.1016/j.tig.2018.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 2021;9:645593. https://doi.org/10.3389/fcell.2021.645593.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ji LL, Dickman JR, Kang C, Koenig R. Exercise-induced hormesis may help healthy aging. Dose Response. 2010;8:73–9. https://doi.org/10.2203/dose-response.09-048.Ji.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Musci RV, Hamilton KL, Linden MA. Exercise-induced mitohormesis for the maintenance of skeletal muscle and healthspan extension. Sports (Basel). 2019;7(7):170. https://doi.org/10.3390/sports7070170.

    Article  PubMed  Google Scholar 

  83. Wang K, et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther. 2022;7:374. https://doi.org/10.1038/s41392-022-01211-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pappalardo XG, Barra V. Losing DNA methylation at repetitive elements and breaking bad. Epigenetics Chromatin. 2021;14:25. https://doi.org/10.1186/s13072-021-00400-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Johansson A, Enroth S, Gyllensten U. Continuous aging of the human DNA methylome throughout the human lifespan. PLoS One. 2013;8:e67378. https://doi.org/10.1371/journal.pone.0067378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009;10:691–703. https://doi.org/10.1038/nrg2640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Erwin JA, Marchetto MC, Gage FH. Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci. 2014;15:497–506. https://doi.org/10.1038/nrn3730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Van Meter M, et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun. 2014;5:5011. https://doi.org/10.1038/ncomms6011.

    Article  CAS  PubMed  Google Scholar 

  89. da Silva Rodrigues G, et al. Exercise training modifies the whole blood DNA methylation profile in middle-aged and older women. J Appl Physiol (1985). 2023;134:610–21. https://doi.org/10.1152/japplphysiol.00237.2022.

    Article  CAS  PubMed  Google Scholar 

  90. Lohman T, et al. High-Intensity interval training reduces transcriptomic age: a randomized controlled trial. Aging Cell. 2023;22:e13841. https://doi.org/10.1111/acel.13841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fox FAU, Liu D, Breteler MMB, Aziz NA. Physical activity is associated with slower epigenetic ageing—findings from the Rhineland study. Aging Cell. 2023;22:e13828. https://doi.org/10.1111/acel.13828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Duygu Ucar and The Jackson Laboratory for providing access to raw data on the European Genome-phenome Archive (EGA, accession number EGAS00001002605), which was used for analyses of RE chromatin accessibility.

Funding

This study was supported by the National Institutes of Health grants: R21AG060302 and R01AG078859 (T.J.L.); R01AG013038, R21AG049451, R21AG042795 and R21HL107105 (D.R.S.); and R01AG043452 (A.D.B.).

Author information

Authors and Affiliations

Authors

Contributions

T.J.L. and M.E.S. conceptualized this study. D.R.S. and A.D.B.’s research groups conducted the studies from which samples were obtained. D.W., A.N.C., G.T.M., M.E.S. and T.J.L. performed RNA and DNA isolation and analyses. M.E.S. and T.J.L. performed statistical analyses and transcriptome and epigenome analyses. M.E.S. and T.J.L. wrote the manuscript with editing assistance from all co-authors.

Corresponding author

Correspondence to Thomas J. LaRocca.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 3367 KB)

Supplementary file2 (DOCX 99 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, M.E., Wahl, D., Cavalier, A.N. et al. Repetitive element transcript accumulation is associated with inflammaging in humans. GeroScience (2024). https://doi.org/10.1007/s11357-024-01126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01126-y

Keywords

Navigation