Skip to main content
Log in

Somatic mutations in aging and disease

  • REVIEW
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract  

Time always leaves its mark, and our genome is no exception. Mutations in the genome of somatic cells were first hypothesized to be the cause of aging in the 1950s, shortly after the molecular structure of DNA had been described. Somatic mutation theories of aging are based on the fact that mutations in DNA as the ultimate template for all cellular functions are irreversible. However, it took until the 1990s to develop the methods to test if DNA mutations accumulate with age in different organs and tissues and estimate the severity of the problem. By now, numerous studies have documented the accumulation of somatic mutations with age in normal cells and tissues of mice, humans, and other animals, showing clock-like mutational signatures that provide information on the underlying causes of the mutations. In this review, we will first briefly discuss the recent advances in next-generation sequencing that now allow quantitative analysis of somatic mutations. Second, we will provide evidence that the mutation rate differs between cell types, with a focus on differences between germline and somatic mutation rate. Third, we will discuss somatic mutational signatures as measures of aging, environmental exposure, and activities of DNA repair processes. Fourth, we will explain the concept of clonally amplified somatic mutations, with a focus on clonal hematopoiesis. Fifth, we will briefly discuss somatic mutations in the transcriptome and in our other genome, i.e., the genome of mitochondria. We will end with a brief discussion of a possible causal contribution of somatic mutations to the aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Szilard L. On the nature of the aging process. Proc Natl Acad Sci U S A. 1959;45:30–45. https://doi.org/10.1073/pnas.45.1.30.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Failla G. The aging process and cancerogenesis. Ann N Y Acad Sci. 1958;71:1124–40. https://doi.org/10.1111/j.1749-6632.1958.tb46828.x.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Zetterberg H, Bath M, Zetterberg M, Bernhardt P, Hammarsten O. The Szilard hypothesis on the nature of aging revisited. Genetics. 2009;182:3–9. https://doi.org/10.1534/genetics.109.103341.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Milholland B, Suh Y, Vijg J. Mutation and catastrophe in the aging genome. Exp Gerontol. 2017;94:34–40. https://doi.org/10.1016/j.exger.2017.02.073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zheng RS, Zhang SW, Zeng HM, Wang SM, Sun KX, Chen R, et al. Cancer incidence and mortality in China, 2016. J Natl Cancer Ctr. 2022;2:1–9. https://doi.org/10.1016/j.jncc.2022.02.002.

    Article  Google Scholar 

  6. Singh SD, Henley SJ, Ryerson AB. Surveillance for cancer incidence and mortality - United States, 2013. Mmwr Surveill Summ. 2017;66:1–35.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Holland AJ, Cleveland DW. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol. 2009;10:478–87. https://doi.org/10.1038/nrm2718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–8. https://doi.org/10.1126/science.959840.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Zhang L, Dong X, Lee M, Maslov AY, Wang T, Vijg J. Single-cell whole-genome sequencing reveals the functional landscape of somatic mutations in B lymphocytes across the human lifespan. Proc Natl Acad Sci U S A. 2019;116:9014–9. https://doi.org/10.1073/pnas.1902510116.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ellis P, Moore L, Sanders MA, Butler TM, Brunner SF, Lee-Six H, et al. Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing. Nat Protoc. 2021;16:841–71. https://doi.org/10.1038/s41596-020-00437-6.

    Article  CAS  PubMed  Google Scholar 

  11. Spencer Chapman M, Ranzoni AM, Myers B, Williams N, Coorens THH, Mitchell E, et al. Lineage tracing of human development through somatic mutations. Nature. 2021;595:85–90. https://doi.org/10.1038/s41586-021-03548-6.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Petrackova A, Vasinek M, Sedlarikova L, Dyskova T, Schneiderova P, Novosad T, et al. Standardization of sequencing coverage depth in NGS: recommendation for detection of clonal and subclonal mutations in cancer diagnostics. Front Oncol. 2019;9:851. https://doi.org/10.3389/fonc.2019.00851.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pfeiffer F, Grober C, Blank M, Handler K, Beyer M, Schultze JL, et al. Systematic evaluation of error rates and causes in short samples in next-generation sequencing. Sci Rep. 2018;8:10950. https://doi.org/10.1038/s41598-018-29325-6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stoler N, Nekrutenko A. Sequencing error profiles of Illumina sequencing instruments. NAR Genom Bioinform. 2021;3:lqab019. https://doi.org/10.1093/nargab/lqab019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gossen JA, de Leeuw WJ, Tan CH, Zwarthoff EC, Berends F, Lohman PH, et al. Efficient rescue of integrated shuttle vectors from transgenic mice: a model for studying mutations in vivo. Proc Natl Acad Sci U S A. 1989;86:7971–5. https://doi.org/10.1073/pnas.86.20.7971.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boerrigter ME, Dolle ME, Martus HJ, Gossen JA, Vijg J. Plasmid-based transgenic mouse model for studying in vivo mutations. Nature. 1995;377:657–9. https://doi.org/10.1038/377657a0.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Kohler SW, Provost GS, Fieck A, Kretz PL, Bullock WO, Sorge JA, et al. Spectra of spontaneous and mutagen-induced mutations in the lacI gene in transgenic mice. Proc Natl Acad Sci U S A. 1991;88:7958–62. https://doi.org/10.1073/pnas.88.18.7958.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gundry M, Li WG, Maqbool SB, Vijg J. Direct, genome-wide assessment of DNA mutations in single cells. Nucleic Acids Res. 2012;40:2032–40. https://doi.org/10.1093/nar/gkr949.

    Article  CAS  PubMed  Google Scholar 

  19. Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338:1622–6. https://doi.org/10.1126/science.1229164.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong X, Zhang L, Milholland B, Lee M, Maslov AY, Wang T, et al. Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. Nat Methods. 2017;14:491–3. https://doi.org/10.1038/nmeth.4227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bohrson CL, Barton AR, Lodato MA, Rodin RE, Luquette LJ, Viswanadham VV, et al. Linked-read analysis identifies mutations in single-cell DNA-sequencing data. Nat Genet. 2019;51:749–54. https://doi.org/10.1038/s41588-019-0366-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–8. https://doi.org/10.1038/nature12213.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21. https://doi.org/10.1038/nature12477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Milholland B, Auton A, Suh Y, Vijg J. Age-related somatic mutations in the cancer genome. Oncotarget. 2015;6:24627–35. https://doi.org/10.18632/oncotarget.5685.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A. 2012;109:14508–13. https://doi.org/10.1073/pnas.1208715109.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Schmitt MW, Fox EJ, Prindle MJ, Reid-Bayliss KS, True LD, Radich JP, et al. Sequencing small genomic targets with high efficiency and extreme accuracy. Nat Methods. 2015;12:423–5. https://doi.org/10.1038/nmeth.3351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoang ML, Kinde I, Tomasetti C, McMahon KW, Rosenquist TA, Grollman AP, et al. Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing. Proc Natl Acad Sci U S A. 2016;113:9846–51. https://doi.org/10.1073/pnas.1607794113.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abascal F, Harvey LMR, Mitchell E, Lawson ARJ, Lensing SV, Ellis P, et al. Somatic mutation landscapes at single-molecule resolution. Nature. 2021. https://doi.org/10.1038/s41586-021-03477-4.

    Article  PubMed  Google Scholar 

  29. Maslov AY, Makhortov S, Sun S, Heid J, Dong X, Lee M, et al. Single-molecule, quantitative detection of low-abundance somatic mutations by high-throughput sequencing. Sci Adv. 2022;8:eabm3259. https://doi.org/10.1126/sciadv.abm3259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li C, Williams SM. Human somatic variation: it’s not just for cancer anymore. Curr Genet Med Rep. 2013;1:212–8. https://doi.org/10.1007/s40142-013-0029-z.

    Article  Google Scholar 

  31. Erickson RP. Somatic gene mutation and human disease other than cancer: an update. Mutat Res. 2010;705:96–106. https://doi.org/10.1016/j.mrrev.2010.04.002.

    Article  CAS  PubMed  Google Scholar 

  32. Mustjoki S, Young NS. Somatic mutations in “benign” disease. N Engl J Med. 2021;384:2039–52. https://doi.org/10.1056/NEJMra2101920.

    Article  CAS  PubMed  Google Scholar 

  33. Machado HE, Mitchell E, Øbro NF, Kübler K, Davies M, Leongamornlert D, et al. Diverse mutational landscapes in human lymphocytes. Nature. 2022. https://doi.org/10.1038/s41586-022-05072-7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brazhnik K, Sun S, Alani O, Kinkhabwala M, Wolkoff AW, Maslov AY, et al. Single-cell analysis reveals different age-related somatic mutation profiles between stem and differentiated cells in human liver. Sci Adv. 2020;6:eaax2659. https://doi.org/10.1126/sciadv.aax2659.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang Z, Sun S, Lee M, Maslov AY, Shi M, Waldman S, et al. Single-cell analysis of somatic mutations in human bronchial epithelial cells in relation to aging and smoking. Nat Genet. 2022;54:492–8. https://doi.org/10.1038/s41588-022-01035-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A, et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science. 2015;350:94–8. https://doi.org/10.1126/science.aab1785.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR, Kwon M, et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science. 2018;359:555–9. https://doi.org/10.1126/science.aao4426.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Miller MB, Huang AY, Kim J, Zhou Z, Kirkham SL, Maury EA, et al. Somatic genomic changes in single Alzheimer’s disease neurons. Nature. 2022;604:714–22. https://doi.org/10.1038/s41586-022-04640-1.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luquette LJ, Miller MB, Zhou Z, Bohrson CL, Zhao Y, Jin H, et al. Single-cell genome sequencing of human neurons identifies somatic point mutation and indel enrichment in regulatory elements. Nat Genet. 2022;54:1564–71. https://doi.org/10.1038/s41588-022-01180-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choudhury S, Huang AY, Kim J, Zhou Z, Morillo K, Maury EA, et al. Somatic mutations in single human cardiomyocytes reveal age-associated DNA damage and widespread oxidative genotoxicity. Nat Aging. 2022. https://doi.org/10.1038/s43587-022-00261-5.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ren P, Dong X, Vijg J. Age-related somatic mutation burden in human tissues. Front Aging. 2022;3:1018119. https://doi.org/10.3389/fragi.2022.1018119.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Evrony GD, Lee E, Park PJ, Walsh CA. Resolving rates of mutation in the brain using single-neuron genomics. eLife. 2016;5:e12966. https://doi.org/10.7554/eLife.12966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cai X, Evrony GD, Lehmann HS, Elhosary PC, Mehta BK, Poduri A, et al. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep. 2014;8:1280–9. https://doi.org/10.1016/j.celrep.2014.07.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Blokzijl F, de Ligt J, Jager M, Sasselli V, Roerink S, Sasaki N, et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature. 2016;538:260–4. https://doi.org/10.1038/nature19768.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R, Sanders MA, et al. The mutational landscape of human somatic and germline cells. Nature. 2021. https://doi.org/10.1038/s41586-021-03822-7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Haldane JBS. The rate of spontaneous mutation of a human gene. J Genet. 1935;31:317–26. https://doi.org/10.1007/BF02982403.

    Article  Google Scholar 

  47. Drake JW, Charlesworth B, Charlesworth D, Crow JF. Rates of spontaneous mutation. Genetics. 1998;148:1667–86. https://doi.org/10.1093/genetics/148.4.1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012;488:471–5. https://doi.org/10.1038/nature11396.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Milholland B, Dong X, Zhang L, Hao X, Suh Y, Vijg J. Differences between germline and somatic mutation rates in humans and mice. Nat Commun. 2017;8:15183. https://doi.org/10.1038/ncomms15183.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. de Manuel M, Wu FL, Przeworski M. A paternal bias in germline mutation is widespread in amniotes and can arise independently of cell division numbers. Elife. 2022;11:e80008. https://doi.org/10.7554/eLife.80008.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rouhani FJ, Nik-Zainal S, Wuster A, Li Y, Conte N, Koike-Yusa H, et al. Mutational history of a human cell lineage from somatic to induced pluripotent stem cells. PLoS Genet. 2016;12:e1005932. https://doi.org/10.1371/journal.pgen.1005932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuijk E, Jager M, van der Roest B, Locati MD, Van Hoeck A, Korzelius J, et al. The mutational impact of culturing human pluripotent and adult stem cells. Nat Commun. 2020;11:2493. https://doi.org/10.1038/s41467-020-16323-4.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brazhnik K, Sun S, Alani O, Kinkhabwala M, Wolkoff AW, Maslov AY, et al. Single-cell analysis reveals different age-related somatic mutation profiles between stem and differentiated cells in human liver. Sci Adv. 2020;6:eaax2659. https://doi.org/10.1126/sciadv.aax2659.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Flatt T, Partridge L. Horizons in the evolution of aging. BMC Biol. 2018;16:93. https://doi.org/10.1186/s12915-018-0562-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S, et al. Clock-like mutational processes in human somatic cells. Nat Genet. 2015;47:1402–7. https://doi.org/10.1038/ng.3441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58. https://doi.org/10.1126/science.1235122.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149:979–93. https://doi.org/10.1016/j.cell.2012.04.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alexandrov LB, Ju YS, Haase K, Van Loo P, Martincorena I, Nik-Zainal S, et al. Mutational signatures associated with tobacco smoking in human cancer. Science. 2016;354:618–22. https://doi.org/10.1126/science.aag0299.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578:94–101. https://doi.org/10.1038/s41586-020-1943-3.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim J, Mouw KW, Polak P, Braunstein LZ, Kamburov A, Kwiatkowski DJ, et al. Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors. Nat Genet. 2016;48:600–6. https://doi.org/10.1038/ng.3557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kucab JE, Zou X, Morganella S, Joel M, Nanda AS, Nagy E, et al. A compendium of mutational signatures of environmental agents. Cell. 2019;177:821–36. https://doi.org/10.1016/j.cell.2019.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moore L, Leongamornlert D, Coorens THH, Sanders MA, Ellis P, Dentro SC, et al. The mutational landscape of normal human endometrial epithelium. Nature. 2020;580:640–6. https://doi.org/10.1038/s41586-020-2214-z.

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Olafsson S, McIntyre RE, Coorens T, Butler T, Jung H, Robinson PS, et al. Somatic evolution in non-neoplastic IBD-affected colon. Cell. 2020;182:672–84. https://doi.org/10.1016/j.cell.2020.06.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Volkova NV, Meier B, Gonzalez-Huici V, Bertolini S, Gonzalez S, Vohringer H, et al. Mutational signatures are jointly shaped by DNA damage and repair. Nat Commun. 2020;11:2169. https://doi.org/10.1038/s41467-020-15912-7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Meier B, Volkova NV, Hong Y, Schofield P, Campbell PJ, Gerstung M, et al. Mutational signatures of DNA mismatch repair deficiency in C. elegans and human cancers. Genome Res. 2018;28:666–75. https://doi.org/10.1101/gr.226845.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao H, Thienpont B, Yesilyurt BT, Moisse M, Reumers J, Coenegrachts L, et al. Mismatch repair deficiency endows tumors with a unique mutation signature and sensitivity to DNA double-strand breaks. eLife. 2014;3:e02725. https://doi.org/10.7554/eLife.02725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Donehower LA, Creighton CJ, Schultz N, Shinbrot E, Chang K, Gunaratne PH, et al. MLH1-silenced and non-silenced subgroups of hypermutated colorectal carcinomas have distinct mutational landscapes. J Pathol. 2013;229:99–110. https://doi.org/10.1002/path.4087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Consortium GT. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5. https://doi.org/10.1038/ng.2653.

    Article  CAS  Google Scholar 

  69. Dong X, Sun S, Zhang L, Kim S, Tu Z, Montagna C, et al. Age-related telomere attrition causes aberrant gene expression in sub-telomeric regions. Aging Cell. 2021;20:e13357. https://doi.org/10.1111/acel.13357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mahmoud M, Gobet N, Cruz-Davalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long and the short of it. Genome Biol. 2019;20:246. https://doi.org/10.1186/s13059-019-1828-7.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98. https://doi.org/10.1056/NEJMoa1408617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Busque L, Sun M, Buscarlet M, Ayachi S, Feroz Zada Y, Provost S, et al. High-sensitivity C-reactive protein is associated with clonal hematopoiesis of indeterminate potential. Blood Adv. 2020;4:2430–8. https://doi.org/10.1182/bloodadvances.2019000770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Arends CM, Liman TG, Strzelecka PM, Kufner A, Lowe P, Huo S, et al. Associations of clonal hematopoiesis with recurrent vascular events and death in patients with incident ischemic stroke. Blood. 2023;141:787–99. https://doi.org/10.1182/blood.2022017661.

    Article  CAS  PubMed  Google Scholar 

  74. Bouzid H, Belk JA, Jan M, Qi YY, Sarnowski C, Wirth S, et al. Clonal hematopoiesis is associated with protection from Alzheimer’s disease. Nat Med. 2023;29:1662-+. https://doi.org/10.1038/s41591-023-02397-2.

  75. Sun S, Sproviero D, Payán-Gómez C, Huang Z, Hoeijmakers JHJ, Maslov AY, et al. Reduced frequency of clonal hematopoiesis in Parkinson’s disease. bioRxiv. 2023:2023.05.04.539397. https://doi.org/10.1101/2023.05.04.539397.

  76. Yizhak K, Aguet F, Kim J, Hess JM, Kubler K, Grimsby J, et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science. 2019;364:eaaw0726. https://doi.org/10.1126/science.aaw0726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Garcia-Nieto PE, Morrison AJ, Fraser HB. The somatic mutation landscape of the human body. Genome Biol. 2019;20:298. https://doi.org/10.1186/s13059-019-1919-5.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Li R, Di L, Li J, Fan W, Liu Y, Guo W, et al. A body map of somatic mutagenesis in morphologically normal human tissues. Nature. 2021;597:398–403. https://doi.org/10.1038/s41586-021-03836-1.

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Li R, Du Y, Chen Z, Xu D, Lin T, Jin S, et al. Macroscopic somatic clonal expansion in morphologically normal human urothelium. Science. 2020;370:82–9. https://doi.org/10.1126/science.aba7300.

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Yokoyama A, Kakiuchi N, Yoshizato T, Nannya Y, Suzuki H, Takeuchi Y, et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature. 2019;565:312–7. https://doi.org/10.1038/s41586-018-0811-x.

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, Hall MWJ, et al. Somatic mutant clones colonize the human esophagus with age. Science. 2018;362:911–7. https://doi.org/10.1126/science.aau3879.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Laconi E, Marongiu F, DeGregori J. Cancer as a disease of old age: changing mutational and microenvironmental landscapes. Br J Cancer. 2020;122:943–52. https://doi.org/10.1038/s41416-019-0721-1.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Abby E, Dentro SC, Hall MWJ, Fowler JC, Ong SH, Sood R, et al. Notch1 mutations drive clonal expansion in normal esophageal epithelium but impair tumor growth. Nat Genet. 2023;55:232–45. https://doi.org/10.1038/s41588-022-01280-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yoshida K, Gowers KHC, Lee-Six H, Chandrasekharan DP, Coorens T, Maughan EF, et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature. 2020;578:266–72. https://doi.org/10.1038/s41586-020-1961-1.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vijg J, Dong X. Pathogenic mechanisms of somatic mutation and genome mosaicism in aging. Cell. 2020;182:12–23. https://doi.org/10.1016/j.cell.2020.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Eisenberg E, Levanon EY. A-to-I RNA editing - immune protector and transcriptome diversifier. Nat Rev Genet. 2018;19:473–90. https://doi.org/10.1038/s41576-018-0006-1.

    Article  CAS  PubMed  Google Scholar 

  87. Tassinari V, La Rosa P, Guida E, Colopi A, Caratelli S, De Paolis F, et al. Contribution of A-to-I RNA editing, M6A RNA methylation, and alternative splicing to physiological brain aging and neurodegenerative diseases. Mech Ageing Dev. 2023;212:111807. https://doi.org/10.1016/j.mad.2023.111807.

    Article  CAS  PubMed  Google Scholar 

  88. Anagnostou ME, Chung C, McGann E, Verheijen BM, Kou Y, Chen L, et al. Transcription errors in aging and disease. Transl Med Aging. 2021;5:31–8. https://doi.org/10.1016/j.tma.2021.05.002.

    Article  CAS  Google Scholar 

  89. Vermulst M, Denney AS, Lang MJ, Hung CW, Moore S, Moseley MA, et al. Transcription errors induce proteotoxic stress and shorten cellular lifespan. Nat Commun. 2015;6:8065. https://doi.org/10.1038/ncomms9065.

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Khrapko K, Vijg J. Mitochondrial DNA mutations and aging: devils in the details? Trends Genet. 2009;25:91–8. https://doi.org/10.1016/j.tig.2008.11.007.

    Article  CAS  PubMed  Google Scholar 

  91. Chocron ES, Munkacsy E, Pickering AM. Cause or casualty: the role of mitochondrial DNA in aging and age-associated disease. Biochim Biophys Acta Mol Basis Dis. 2019;1865:285–97. https://doi.org/10.1016/j.bbadis.2018.09.035.

    Article  CAS  PubMed  Google Scholar 

  92. Larsson NG. Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem. 2010;79(79):683–706. https://doi.org/10.1146/annurev-biochem-060408-093701.

    Article  CAS  PubMed  Google Scholar 

  93. Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH, Sanders MA, et al. Somatic mutation rates scale with lifespan across mammals. Nature. 2022;604:517–24. https://doi.org/10.1038/s41586-022-04618-z.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mikhailova AG, Mikhailova AA, Ushakova K, Tretiakov EO, Iliushchenko D, Shamansky V, et al. A mitochondria-specific mutational signature of aging: increased rate of A > G substitutions on the heavy strand. Nucleic Acids Res. 2022. https://doi.org/10.1093/nar/gkac779.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sanchez-Contreras M, Sweetwyne MT, Tsantilas KA, Whitson JA, Campbell MD, Kohrn BF, et al. The multi-tissue landscape of somatic mtDNA mutations indicates tissue-specific accumulation and removal in aging. eLife. 2023;12:e83395. https://doi.org/10.7554/eLife.83395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang L, Dong X, Tian X, Lee M, Ablaeva J, Firsanov D, et al. Maintenance of genome sequence integrity in long- and short-lived rodent species. Sci Adv. 2021;7:eabj3284. https://doi.org/10.1126/sciadv.abj3284.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. de Grey ADNJ. Protagonistic pleiotropy: why cancer may be the only pathogenic effect of accumulating nuclear mutations and epimutations in aging. Mech Ageing Dev. 2007;128:456–9. https://doi.org/10.1016/j.mad.2007.05.005.

    Article  CAS  PubMed  Google Scholar 

  98. Martin GM. The genetics and epigenetics of altered proliferative homeostasis in ageing and cancer. Mech Ageing Dev. 2007;128:9–12. https://doi.org/10.1016/j.mad.2006.11.003.

    Article  CAS  PubMed  Google Scholar 

  99. Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dolle ME, et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature. 2006;441:1011–4. https://doi.org/10.1038/nature04844.

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Enge M, Arda HE, Mignardi M, Beausang J, Bottino R, Kim SK, et al. Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell. 2017;171:321–30. https://doi.org/10.1016/j.cell.2017.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Franco I, Johansson A, Olsson K, Vrtacnik P, Lundin P, Helgadottir HT, et al. Somatic mutagenesis in satellite cells associates with human skeletal muscle aging. Nat Commun. 2018;9:800. https://doi.org/10.1038/s41467-018-03244-6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fukuchi K, Tanaka K, Nakura J, Kumahara Y, Uchida T, Okada Y. Elevated spontaneous mutation rate in SV40-transformed Werner syndrome fibroblast cell lines. Somat Cell Mol Genet. 1985;11:303–8. https://doi.org/10.1007/BF01534688.

    Article  CAS  PubMed  Google Scholar 

  103. Fukuchi K, Martin GM, Monnat RJ. Mutator phenotype of Werner syndrome is characterized by extensive deletions. P Natl Acad Sci USA. 1989;86:5893–7. https://doi.org/10.1073/pnas.86.15.5893.

    Article  ADS  CAS  Google Scholar 

  104. Monnat RJ Jr, Hackmann AF, Chiaverotti TA. Nucleotide sequence analysis of human hypoxanthine phosphoribosyltransferase (HPRT) gene deletions. Genomics. 1992;13:777–87. https://doi.org/10.1016/0888-7543(92)90153-j.

    Article  CAS  PubMed  Google Scholar 

  105. Ben-Aharon I, Levi M, Margel D, Yerushalmi R, Rizel S, Perry S, et al. Premature ovarian aging in BRCA carriers: a prototype of systemic precocious aging? Oncotarget. 2018;9:15931–41. https://doi.org/10.18632/oncotarget.24638.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sun S, Brazhnik K, Lee M, Maslov AY, Zhang Y, Huang Z, et al. Single-cell analysis of somatic mutation burden in mammary epithelial cells of pathogenic BRCA1/2 mutation carriers. J Clin Invest. 2022;132. https://doi.org/10.1172/JCI148113.

  107. Robinson PS, Coorens THH, Palles C, Mitchell E, Abascal F, Olafsson S, et al. Increased somatic mutation burdens in normal human cells due to defective DNA polymerases. Nat Genet. 2021;53:1434–42. https://doi.org/10.1038/s41588-021-00930-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Albertson TM, Ogawa M, Bugni JM, Hays LE, Chen Y, Wang Y, et al. DNA polymerase epsilon and delta proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci USA. 2009;106:17101–4. https://doi.org/10.1073/pnas.0907147106.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  109. Hegan DC, Narayanan L, Jirik FR, Edelmann W, Liskay RM, Glazer PM. Differing patterns of genetic instability in mice deficient in the mismatch repair genes Pms2, Mlh1, Msh2, Msh3 and Msh6. Carcinogenesis. 2006;27:2402–8. https://doi.org/10.1093/carcin/bgl079.

    Article  CAS  PubMed  Google Scholar 

  110. Franco I, Revechon G, Eriksson M. Challenges of proving a causal role of somatic mutations in the aging process. Aging Cell. 2022;21:e13613. https://doi.org/10.1111/acel.13613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wakayama S, Kohda T, Obokata H, Tokoro M, Li C, Terashita Y, et al. Successful serial recloning in the mouse over multiple generations. Cell Stem Cell. 2013;12:293–7. https://doi.org/10.1016/j.stem.2013.01.005.

    Article  CAS  PubMed  Google Scholar 

  112. Tian XC, Kubota C, Enright B, Yang X. Cloning animals by somatic cell nuclear transfer—biological factors. Reprod Biol Endocrinol. 2003;1:98. https://doi.org/10.1186/1477-7827-1-98.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gouveia C, Huyser C, Egli D, Pepper MS. Lessons learned from somatic cell nuclear transfer. Int J Mol Sci. 2020;21:2314. https://doi.org/10.3390/ijms21072314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vijg J, Schumacher B, Abakir A, Antonov M, Bradley C, Cagan A, et al. Mitigating age-related somatic mutation burden. Trends Mol Med. 2023;29:530–40. https://doi.org/10.1016/j.molmed.2023.04.002.

    Article  CAS  PubMed  Google Scholar 

  115. Hou Y, Fan W, Yan L, Li R, Lian Y, Huang J, et al. Genome analyses of single human oocytes. Cell. 2013;155:1492–506. https://doi.org/10.1016/j.cell.2013.11.040.

    Article  CAS  PubMed  Google Scholar 

  116. Lu S, Zong C, Fan W, Yang M, Li J, Chapman AR, et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science. 2012;338:1627–30. https://doi.org/10.1126/science.1229112.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen C, Xing D, Tan L, Li H, Zhou G, Huang L, et al. Single-cell whole-genome analyses by linear amplification via transposon insertion (LIANTI). Science. 2017;356:189–94. https://doi.org/10.1126/science.aak9787.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gonzalez-Pena V, Natarajan S, Xia Y, Klein D, Carter R, Pang Y, et al. Accurate genomic variant detection in single cells with primary template-directed amplification. Proc Natl Acad Sci U S A. 2021;118:e2024176118. https://doi.org/10.1073/pnas.2024176118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Osorio FG, Rosendahl Huber A, Oka R, Verheul M, Patel SH, Hasaart K, et al. Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep. 2018;25:2308–16. https://doi.org/10.1016/j.celrep.2018.11.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tang J, Fewings E, Chang D, Zeng H, Liu S, Jorapur A, et al. The genomic landscapes of individual melanocytes from human skin. Nature. 2020;586:600–5. https://doi.org/10.1038/s41586-020-2785-8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bae T, Tomasini L, Mariani J, Zhou B, Roychowdhury T, Franjic D, et al. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science. 2018;359:550–5. https://doi.org/10.1126/science.aan8690.

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Park S, Mali NM, Kim R, Choi JW, Lee J, Lim J, et al. Clonal dynamics in early human embryogenesis inferred from somatic mutation. Nature. 2021;597:393–7. https://doi.org/10.1038/s41586-021-03786-8.

    Article  ADS  CAS  PubMed  Google Scholar 

  123. Lee-Six H, Olafsson S, Ellis P, Osborne RJ, Sanders MA, Moore L, et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature. 2019;574:532–7. https://doi.org/10.1038/s41586-019-1672-7.

    Article  ADS  CAS  PubMed  Google Scholar 

  124. Ng SWK, Rouhani FJ, Brunner SF, Brzozowska N, Aitken SJ, Yang M, et al. Convergent somatic mutations in metabolism genes in chronic liver disease. Nature. 2021;598:473–8. https://doi.org/10.1038/s41586-021-03974-6.

    Article  ADS  CAS  PubMed  Google Scholar 

  125. Brunner SF, Roberts ND, Wylie LA, Moore L, Aitken SJ, Davies SE, et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature. 2019;574:538–42. https://doi.org/10.1038/s41586-019-1670-9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  126. Grossmann S, Hooks Y, Wilson L, Moore L, O’Neill L, Martincorena I, et al. Development, maturation, and maintenance of human prostate inferred from somatic mutations. Cell Stem Cell. 2021;28:1262–74. https://doi.org/10.1016/j.stem.2021.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Grolleman JE, de Voer RM, Elsayed FA, Nielsen M, Weren RDA, Palles C, et al. Mutational signature analysis reveals NTHL1 deficiency to cause a multi-tumor phenotype. Cancer Cell. 2019;35:256–66. https://doi.org/10.1016/j.ccell.2018.12.011.

    Article  CAS  PubMed  Google Scholar 

  128. Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, et al. Universal patterns of selection in cancer and somatic tissues. Cell. 2017;171:1029–41. https://doi.org/10.1016/j.cell.2017.09.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dietlein F, Wang AB, Fagre C, Tang A, Besselink NJM, Cuppen E, et al. Genome-wide analysis of somatic noncoding mutation patterns in cancer. Science. 2022;376:eabg5601. https://doi.org/10.1126/science.abg5601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Waters TR, Swann PF. Thymine-DNA glycosylase and G to A transition mutations at CpG sites. Mutat Res. 2000;462:137–47. https://doi.org/10.1016/s1383-5742(00)00031-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China grant 82172461 to J.V.; NIH grants AG017242, AG047200, AG038072, ES029519, HL145560, and AG056278 to J.V.; DOD grant BC180689P1 to J.V.; and the Glenn Foundation for Medical Research to J.V.

Author information

Authors and Affiliations

Authors

Contributions

J.V. and P.R. conceived of topic area. J.V. and P.R. wrote the initial draft of the manuscript. J.Z. drew the figures. J.V. reviewed and edited the manuscript; all authors commented on previous versions of the manuscript. All authors approved the manuscript for publication. We acknowledge the Bioinformatics Core in the Center for Single-Cell Omics (CSCOmics), Shanghai Jiao Tong University School of Medicine, for providing assistance with interpreting the bioinformatics and computational genomics aspects of this review.

Corresponding authors

Correspondence to Peijun Ren or Jan Vijg.

Ethics declarations

Competing interests

J.V. is co-founder of SingulOmics Corp. and MutagenTech Inc. The remaining authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, P., Zhang, J. & Vijg, J. Somatic mutations in aging and disease. GeroScience (2024). https://doi.org/10.1007/s11357-024-01113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01113-3

Keywords

Navigation