Skip to main content

Advertisement

Log in

Aerobic exercise training effects on hippocampal volume in healthy older individuals: a meta-analysis of randomized controlled trials

  • SHORT COMMUNICATION
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

We conducted a meta-analysis of randomized controlled trials investigating the effects of aerobic exercise training (AET) lasting ≥ 4 weeks on hippocampal volume and cardiorespiratory fitness (CRF) in cognitively unimpaired, healthy older individuals. Random-effects robust variance estimation models were used to test differences between AET and controls, while meta-regressions tested associations between CRF and hippocampal volume changes. We included eight studies (N = 554) delivering fully supervised AET for 3 to 12 months (M = 7.8, SD = 4.5) with an average AET volume of 129.85 min/week (SD = 45.5) at moderate-to-vigorous intensity. There were no significant effects of AET on hippocampal volume (SMD = 0.10, 95% CI − 0.01 to 0.21, p = 0.073), but AET moderately improved CRF (SMD = 0.30, 95% CI 0.12 to 0.48, p = 0.005). Improvement in CRF was not associated with changes in hippocampal volume (bSE = 0.05, SE = 0.51, p = 0.923). From the limited number of studies, AET does not seem to impact hippocampal volume in cognitively unimpaired, healthy older individuals. Notable methodological limitations across investigations might mask the lack of effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Leal SL, Yassa MA. Neurocognitive aging and the hippocampus across species. Trends in Neurosciences. Elsevier Ltd; 2015;800–812. https://doi.org/10.1016/j.tins.2015.10.003

  2. Raz N, Rodrigue KM, Head D, Kennedy KM, Acker JD. Differential aging of the medial temporal lobe: a study of a five-year change. Neurology. 2004;62:433–8. https://doi.org/10.1212/01.WNL.0000106466.09835.46.

    Article  CAS  PubMed  Google Scholar 

  3. Fjell AM, Westlye LT, Grydeland H, Amlien I, Espeseth T, Reinvang I, et al. Critical ages in the life course of the adult brain: nonlinear subcortical aging. Neurobiol Aging. 2013;34:2239–47. https://doi.org/10.1016/j.neurobiolaging.2013.04.006.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fraser MA, Shaw ME, Cherbuin N. A systematic review and meta-analysis of longitudinal hippocampal atrophy in healthy human ageing. Neuroimage. 2015;112:364–74. https://doi.org/10.1016/J.NEUROIMAGE.2015.03.035.

    Article  PubMed  Google Scholar 

  5. Barnes J, Bartlett JW, van de Pol LA, Loy CT, Scahill RI, Frost C, et al. A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiol Aging. 2009;30:1711–23. https://doi.org/10.1016/J.NEUROBIOLAGING.2008.01.010.

    Article  PubMed  Google Scholar 

  6. Nobis L, Manohar SG, Smith SM, Alfaro-Almagro F, Jenkinson M, Mackay CE, et al. Hippocampal volume across age: nomograms derived from over 19,700 people in UK Biobank. Neuroimage Clin. 2019;23. https://doi.org/10.1016/j.nicl.2019.101904

  7. Bakhtiari A, Vestergaard MB, Benedek K, Fagerlund B, Mortensen EL, Osler M, et al. Changes in hippocampal volume during a preceding 10-year period do not correlate with cognitive performance and hippocampal blood-brain barrier permeability in cognitively normal late-middle-aged men. Geroscience. 2023;45:1161–75. https://doi.org/10.1007/s11357-022-00712-2.

    Article  PubMed  Google Scholar 

  8. Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev. Elsevier Ltd; 2017;66–86. https://doi.org/10.1016/j.neubiorev.2017.04.030

  9. Fotuhi M, Do D, Jack C. Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol. 2012;189–202. https://doi.org/10.1038/nrneurol.2012.27

  10. Wenger E, Brozzoli C, Lindenberger U, Lövdén M. Expansion and renormalization of human brain structure during skill acquisition. Trends Cogn Sci. Elsevier Ltd; 2017;930–939. https://doi.org/10.1016/j.tics.2017.09.008

  11. Wu Y, Bottes S, Fisch R, Zehnder C, Cole JD, Pilz GA, et al. Chronic in vivo imaging defines age-dependent alterations of neurogenesis in the mouse hippocampus. Nat Aging. 2023;3:380–90. https://doi.org/10.1038/s43587-023-00370-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gonçalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. Cell Press; 2016;897–914. https://doi.org/10.1016/j.cell.2016.10.021

  13. Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16. https://doi.org/10.1016/S1474-4422(12)70291-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Svenningsson AL, Stomrud E, Insel PS, Mattsson N, Palmqvist S, Hansson O. β-amyloid pathology and hippocampal atrophy are independently associated with memory function in cognitively healthy elderly. Sci Rep. 2019;9:1–9. https://doi.org/10.1038/s41598-019-47638-y.

    Article  CAS  Google Scholar 

  15. Voss MW, Soto C, Yoo S, Sodoma M, Vivar C, van Praag H. Exercise and hippocampal memory systems. Trends Cogn Sci. Elsevier Ltd; 2019;318–333. https://doi.org/10.1016/j.tics.2019.01.006

  16. Denoth-Lippuner A, Jessberger S. Formation and integration of new neurons in the adult hippocampus. Nature Reviews Neuroscience. Nat Res. 2021;223–236. https://doi.org/10.1038/s41583-021-00433-z

  17. Biedermann SV, Fuss J, Steinle J, Auer MK, Dormann C, Falfán-Melgoza C, et al. The hippocampus and exercise: histological correlates of MR-detected volume changes. Brain Struct Funct. 2016;221:1353–63. https://doi.org/10.1007/S00429-014-0976-5/FIGURES/6.

    Article  PubMed  Google Scholar 

  18. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124:319–35. https://doi.org/10.1002/cne.901240303.

    Article  CAS  PubMed  Google Scholar 

  19. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice in an enriched environment. Nature. 1997;386:432–4.

    Article  Google Scholar 

  20. van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96:13427–31. https://doi.org/10.1073/pnas.96.23.13427.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cassilhas RC, Lee KS, Fernandes J, Oliveira MGM, Tufik S, Meeusen R, et al. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience. 2012;202:309–17. https://doi.org/10.1016/j.neuroscience.2011.11.029.

    Article  CAS  PubMed  Google Scholar 

  22. Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci. 2004;20:2580–90. https://doi.org/10.1111/J.1460-9568.2004.03720.X.

    Article  PubMed  Google Scholar 

  23. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108:3017–22. https://doi.org/10.1073/pnas.1015950108.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Franjic D, Skarica M, Ma S, Arellano JI, Tebbenkamp ATN, Choi J, et al. Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells. Neuron. 2022;110:452-469.e14. https://doi.org/10.1016/j.neuron.2021.10.036.

    Article  CAS  PubMed  Google Scholar 

  25. Tarumi T, Patel NR, Tomoto T, Pasha E, Khan AM, Kostroske K, et al. Aerobic exercise training and neurocognitive function in cognitively normal older adults: a one-year randomized controlled trial. J Intern Med. 2022;17:17.

    Google Scholar 

  26. Pani J, Reitlo LS, Evensmoen HR, Lydersen S, Wisloff U, Stensvold D, et al. Effect of 5 years of exercise intervention at different intensities on brain structure in older adults from the general population: a generation 100 substudy. Clin Interv Aging. 2021;16:1485–501.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sexton CE, Betts JF, Dennis A, Doherty A, Leeson P, Holloway C, et al. The effects of an aerobic training intervention on cognition, grey matter volumes and white matter microstructure. Physiol Behav. 2020;223:112923. https://doi.org/10.1016/j.physbeh.2020.112923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hortobágyi T, Vetrovsky T, Balbim GM, Sorte Silva NCB, Manca A, Deriu F, et al. The impact of aerobic and resistance training intensity on markers of neuroplasticity in health and disease. Ageing Res Rev. 2022;80:101698. https://doi.org/10.1016/j.arr.2022.101698.

    Article  CAS  PubMed  Google Scholar 

  29. Castells-Sanchez A, Roig-Coll F, Dacosta-Aguayo R, Lamonja-Vicente N, Toran-Monserrat P, Pera G, et al. Molecular and brain volume changes following aerobic exercise, cognitive and combined training in physically inactive healthy late-middle-aged adults: The Projecte Moviment Randomized Controlled Trial. Front Hum Neurosci. 2022;16:854175. https://doi.org/10.3389/fnhum.2022.854175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roig-Coll F, Castells-Sánchez A, Lamonja-Vicente N, Torán-Monserrat P, Pera G, García-Molina A, et al. Effects of aerobic exercise, cognitive and combined training on cognition in physically inactive healthy late-middle-aged adults: the projecte moviment randomized controlled trial. Front Aging Neurosci. 2020;12:376. https://doi.org/10.3389/FNAGI.2020.590168/BIBTEX.

    Article  Google Scholar 

  31. Niemann C, Godde B, Voelcker-Rehage C. Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Front Aging Neurosci. 2014;6:1–24. https://doi.org/10.3389/fnagi.2014.00170.

    Article  Google Scholar 

  32. Maass A, Düzel S, Goerke M, Becke A, Sobieray U, Neumann K, et al. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol Psychiatry. 2015;20:585–93. https://doi.org/10.1038/mp.2014.114.

    Article  CAS  PubMed  Google Scholar 

  33. Jonasson LS, Nyberg L, Kramer AF, Lundquist A, Riklund K, Boraxbekk CJ. Aerobic exercise intervention, cognitive performance, and brain structure: results from the Physical Influences on Brain in Aging (PHIBRA) Study. Front Aging Neurosci. 2017;8:1–15. https://doi.org/10.3389/fnagi.2016.00336.

    Article  Google Scholar 

  34. Matura S, Fleckenstein J, Deichmann R, Engeroff T, Füzéki E, Hattingen E, et al. Effects of aerobic exercise on brain metabolism and grey matter volume in older adults: results of the randomised controlled SMART trial. Transl Psychiatry. 2017;7:e1172. https://doi.org/10.1038/tp.2017.135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilckens KA, Stillman CM, Waiwood AM, Kang C, Leckie RL, Peven JC, et al. Exercise interventions preserve hippocampal volume: a meta-analysis. Hippocampus. 2021;31:335–47. https://doi.org/10.1002/hipo.23292.

    Article  PubMed  Google Scholar 

  36. Wenger E, Mårtensson J, Noack H, Bodammer NC, Kühn S, Schaefer S, et al. Comparing manual and automatic segmentation of hippocampal volumes: reliability and validity issues in younger and older brains. Hum Brain Mapp. 2014;35:4236–48. https://doi.org/10.1002/HBM.22473.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ming G li, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;687–702. https://doi.org/10.1016/j.neuron.2011.05.001

  38. Ernst A, Frisén J. Adult neurogenesis in humans- common and unique traits in mammals. PLoS Biol. 2015;13. https://doi.org/10.1371/journal.pbio.1002045

  39. Farmer J, Zhao X, Van Praag H, Wodtke K, Gage FH, Christie BR. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male sprague-dawley rats in vivo. Neuroscience. 2004;124:71–9. https://doi.org/10.1016/j.neuroscience.2003.09.029.

    Article  CAS  PubMed  Google Scholar 

  40. Redila VA, Christie BR. Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience. 2006;137:1299–307. https://doi.org/10.1016/J.NEUROSCIENCE.2005.10.050.

    Article  CAS  PubMed  Google Scholar 

  41. Oliff HS, Berchtold NC, Isackson P, Cotman CW. Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res Mol Brain Res. 1998;61:147–53. https://doi.org/10.1016/S0169-328X(98)00222-8.

    Article  CAS  PubMed  Google Scholar 

  42. Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, et al. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus. 2009;19:951–61. https://doi.org/10.1002/HIPO.20577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khabour OF, Alzoubi KH, Alomari MA, Alzubi MA. Changes in spatial memory and BDNF expression to concurrent dietary restriction and voluntary exercise. Hippocampus. 2010;20:637–45. https://doi.org/10.1002/HIPO.20657.

    Article  CAS  PubMed  Google Scholar 

  44. Ke Z, Yip SP, Li L, Zheng XX, Tong KY. The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: a rat brain ischemia model. PLoS One. 2011;6:e16643. https://doi.org/10.1371/JOURNAL.PONE.0016643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fuss J, Ben Abdallah NMB, Vogt MA, Touma C, Pacifici PG, Palme R, et al. Voluntary exercise induces anxiety-like behavior in adult C57BL/6J mice correlating with hippocampal neurogenesis. Hippocampus. 2010;20:364–76. https://doi.org/10.1002/HIPO.20634.

    Article  PubMed  Google Scholar 

  46. Van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience. 1999;2:266–70. https://doi.org/10.1038/6368.

    Article  PubMed  Google Scholar 

  47. Alomari MA, Khabour OF, Alzoubi KH, Alzubi MA. Combining restricted diet with forced or voluntary exercises improves hippocampal BDNF and cognitive function in rats. Int J Neurosci. 2016;126:366–73. https://doi.org/10.3109/00207454.2015.1012587.

    Article  CAS  PubMed  Google Scholar 

  48. Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 2010;40:765–801. https://doi.org/10.2165/11534530-000000000-00000.

    Article  PubMed  Google Scholar 

  49. Bayod S, Guzmán-Brambila C, Sanchez-Roige S, Lalanza JF, Kaliman P, Ortuño-Sahagun D, et al. Voluntary exercise promotes beneficial anti-aging mechanisms in SAMP8 female brain. J Mol Neurosci. 2015;55:525–32. https://doi.org/10.1007/S12031-014-0376-6.

    Article  CAS  PubMed  Google Scholar 

  50. Cosín-Tomás M, Alvarez-López MJ, Sanchez-Roige S, Lalanza JF, Bayod S, Sanfeliu C, et al. Epigenetic alterations in hippocampus of SAMP8 senescent mice and modulation by voluntary physical exercise. Front Aging Neurosci. 2014;6:81783. https://doi.org/10.3389/FNAGI.2014.00051/ABSTRACT.

    Article  Google Scholar 

  51. Ferrara N, Rinaldi B, Corbi G, Conti V, Stiuso P, Boccuti S, et al. Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res. 2008;11:139–50. https://doi.org/10.1089/REJ.2007.0576.

    Article  CAS  PubMed  Google Scholar 

  52. Trejo JL, Carro E, Torres-Alemá I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. 2001.

  53. Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. https://doi.org/10.1046/j.1460-9568.2003.03041.x

  54. Erickson KI, Raji CA, Lopez OL, Becker JT, Rosano C, Newman MAB, et al. Physical activity predicts gray matter volume in late adulthood: the cardiovascular health study. Neurology. 2010;75:1415–22. https://doi.org/10.1212/WNL.0b013e3181f88359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Voss MW, Erickson KI, Prakash RS, Chaddock L, Kim JS, Alves H, et al. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun. 2013;28:90–9. https://doi.org/10.1016/j.bbi.2012.10.021.

    Article  CAS  PubMed  Google Scholar 

  56. Vital TM, Stein AM, de Melo Coelho FG, Arantes FJ, Teodorov E, Santos-Galduróz RF. Physical exercise and vascular endothelial growth factor (VEGF) in elderly: a systematic review. Arch Gerontol Geriatr. 2014;59:234–9. https://doi.org/10.1016/J.ARCHGER.2014.04.011.

    Article  CAS  PubMed  Google Scholar 

  57. Rojas Vega S, Strüder HK, Vera Wahrmann B, Schmidt A, Bloch W, Hollmann W. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Res. 2006;1121:59–65. https://doi.org/10.1016/J.BRAINRES.2006.08.105.

    Article  CAS  PubMed  Google Scholar 

  58. Wenger E, Kühn S. Neuroplasticity. Cognitive training: an overview of features and applications: second edition. Springer International Publishing; 2020;69–83. https://doi.org/10.1007/978-3-030-39292-5_6/COVER

  59. Barha CK, Davis JC, Falck RS, Nagamatsu LS, Liu-Ambrose T. Sex differences in exercise efficacy to improve cognition: a systematic review and meta-analysis of randomized controlled trials in older humans. Front Neuroendocrinol. 2017;46:71–85. https://doi.org/10.1016/j.yfrne.2017.04.002.

    Article  PubMed  Google Scholar 

  60. Falck RS, Davis JC, Best JR, Crockett RA, Liu-Ambrose T. Impact of exercise training on physical and cognitive function among older adults: a systematic review and meta-analysis. Neurobiol Aging. Elsevier Inc; 2019;119–130. https://doi.org/10.1016/j.neurobiolaging.2019.03.007

  61. Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med. 2017; bjsports-2016–096587. https://doi.org/10.1136/bjsports-2016-096587

Download references

Acknowledgements

The authors thank Sabina Gillsund and Narcisa Hannerz from the Karolinska Institutet Library for their help with literature searches.

Funding

GMB and NCBSS are jointly funded by the Michael Smith Health Research BC and the Canadian Institutes of Health Research. NCBSS is supported by the Canadians for Leading Edge Alzheimer’s Research. RSF is funded by the Michael Smith Health Research BC. TLA is a Canada Research Chair (Tier I) in Healthy Aging. TH is supported by the Deltaplan Dementie (ZonMW: Memorabel 733050303) and a Healthy Ageing seed grant (CDO17.0023–2017–2–316) from the University Medical Center Groningen.

Author information

Authors and Affiliations

Authors

Contributions

TH, UG and TLA designed the primary research. GMB, NCBSS and TLA designed the current research. GMB, NCBSS and TH performed the research. GMB and NCBSS analysed and interpreted the data. GMB, NCBSS, LTB, RSF, TH, UG, KIE, RH-G and TLA wrote the paper.

Corresponding author

Correspondence to Teresa Liu-Ambrose.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Disclaimer

The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guilherme Moraes Balbim and Nárlon Cássio Boa Sorte Silva contributed equality to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 67 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balbim, G.M., Boa Sorte Silva, N.C., ten Brinke, L. et al. Aerobic exercise training effects on hippocampal volume in healthy older individuals: a meta-analysis of randomized controlled trials. GeroScience 46, 2755–2764 (2024). https://doi.org/10.1007/s11357-023-00971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00971-7

Keywords

Navigation