Skip to main content

Advertisement

Log in

Cerebral venous congestion exacerbates cerebral microhemorrhages in mice

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Cerebral microhemorrhages (CMHs; microbleeds), which are small focal intracerebral hemorrhages, importantly contribute to the pathogenesis of cognitive decline and dementia in older adults. Although recently it has been increasingly recognized that the venous side of the cerebral circulation likely plays a fundamental role in the pathogenesis of a wide spectrum of cerebrovascular and brain disorders, its role in the pathogenesis of CMHs has never been studied. The present study was designed to experimentally test the hypothesis that venous congestion can exacerbate the genesis of CMHs. Increased cerebral venous pressure was induced by internal and external jugular vein ligation (JVL) in C57BL/6 mice in which systemic hypertension was induced by treatment with angiotensin II plus L-NAME. Histological analysis (diaminobenzidine staining) showed that mice with JVL developed multiple CMHs. CMHs in mice with JVL were often localized adjacent to veins and venules and their morphology was consistent with venous origin of the bleeds. In brains of mice with JVL, a higher total count of CMHs was observed compared to control mice. CMHs were distributed widely in the brain of mice with JVL, including the cortical gray matter, brain stem, the basal ganglia, subcortical white matter, cerebellum, and the hippocampi. In mice with JVL, there were more CMHs predominantly in cerebral cortex, brain stem, and cerebellum than in control mice. CMH burden, defined as total CMH volume, also significantly increased in mice with JVL. Thus, cerebral venous congestion can exacerbate CMHs. These observations have relevance to the pathogenesis of cognitive impairment associated with right heart failure as well as elevated cerebral venous pressure due to jugular venous reflux in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akoudad S, Wolters FJ, Viswanathan A, de Bruijn RF, van der Lugt A, Hofman A, Koudstaal PJ, Ikram MA, Vernooij MW. Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol. 2016;73:934–43.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ungvari Z, Tarantini S, Kirkpatrick AC, Csiszar A, Prodan CI. Cerebral microhemorrhages: mechanisms, consequences, and prevention. Am J Physiol Heart Circ Physiol. 2017;312:H1128–43.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Al-Shahi Salman R, Warach S, Launer LJ, Van Buchem MA, Breteler MM. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009;8:165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fulop GA, Tarantini S, Yabluchanskiy A, Molnar A, Prodan CI, Kiss T, Csipo T, Lipecz A, Balasubramanian P, Farkas E, Toth P, Sorond F, Csiszar A, Ungvari Z. Role of age-related alterations of the cerebral venous circulation in the pathogenesis of vascular cognitive impairment. Am J Physiol Heart Circ Physiol. 2019;316:H1124–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leto L, Feola M. Cognitive impairment in heart failure patients. J Geriatr Cardiol. 2014;11:316–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Woo MA, Kumar R, Macey PM, Fonarow GC, Harper RM. Brain injury in autonomic, emotional, and cognitive regulatory areas in patients with heart failure. J Card Fail. 2009;15:214–23.

    Article  PubMed  Google Scholar 

  7. Beer C, Ebenezer E, Fenner S, Lautenschlager NT, Arnolda L, Flicker L, Almeida OP. Contributors to cognitive impairment in congestive heart failure: a pilot case-control study. Intern Med J. 2009;39:600–5.

    Article  CAS  PubMed  Google Scholar 

  8. Hooghiemstra AM, Bertens AS, Leeuwis AE, Bron EE, Bots ML, Brunner-La Rocca HP, de Craen AJM, van der Geest RJ, Greving JP, Kappelle LJ, Niessen WJ, van Oostenbrugge RJ, van Osch MJP, de Roos A, van Rossum AC, Biessels GJ, van Buchem MA, Daemen M, van der Flier WM, Heart-Brain CC. The missing link in the pathophysiology of vascular cognitive impairment: design of the Heart-Brain Study. Cerebrovasc Dis Extra. 2017;7:140–52.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cannon JA, Moffitt P, Perez-Moreno AC, Walters MR, Broomfield NM, McMurray JJV, Quinn TJ. Cognitive impairment and heart failure: systematic review and meta-analysis. J Card Fail. 2017;23:464–75.

    Article  PubMed  Google Scholar 

  10. Roy B, Woo MA, Wang DJJ, Fonarow GC, Harper RM, Kumar R. Reduced regional cerebral blood flow in patients with heart failure. Eur J Heart Fail. 2017;19:1294–302.

    Article  PubMed  Google Scholar 

  11. Loncar G, Bozic B, Lepic T, Dimkovic S, Prodanovic N, Radojicic Z, Cvorovic V, Markovic N, Brajovic M, Despotovic N, Putnikovic B, Popovic-Brkic V. Relationship of reduced cerebral blood flow and heart failure severity in elderly males. Aging Male. 2011;14:59–65.

    Article  PubMed  Google Scholar 

  12. Gruhn N, Larsen FS, Boesgaard S, Knudsen GM, Mortensen SA, Thomsen G, Aldershvile J. Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke. 2001;32:2530–3.

    Article  CAS  PubMed  Google Scholar 

  13. Cornwell WK 3rd, Levine BD. Patients with heart failure with reduced ejection fraction have exaggerated reductions in cerebral blood flow during upright posture. JACC Heart Fail. 2015;3:176–9.

    Article  PubMed  Google Scholar 

  14. Choi BR, Kim JS, Yang YJ, Park KM, Lee CW, Kim YH, Hong MK, Song JK, Park SW, Park SJ, Kim JJ. Factors associated with decreased cerebral blood flow in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol. 2006;97:1365–9.

    Article  PubMed  Google Scholar 

  15. Watson RD, Gibbs CR, Lip GY. ABC of heart failure. Clin Feat Comp BMJ. 2000;320:236–9.

    Article  CAS  Google Scholar 

  16. Fulop GA, Ahire C, Csipo T, Tarantini S, Kiss T, Balasubramanian P, Yabluchanskiy A, Farkas E, Toth A, Nyul-Toth A, Toth P, Csiszar A, Ungvari Z. Cerebral venous congestion promotes blood-brain barrier disruption and neuroinflammation, impairing cognitive function in mice. Geroscience. 2019;41:575–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Auletta L, Greco A, Albanese S, Meomartino L, Salvatore M, Mancini M. Feasibility and safety of two surgical techniques for the development of an animal model of jugular vein occlusion. Exp Biol Med (Maywood). 2017;242:22–8.

    Article  CAS  Google Scholar 

  18. Toth P, Tarantini S, Springo Z, Tucsek Z, Gautam T, Giles CB, Wren JD, Koller A, Sonntag WE, Csiszar A, Ungvari Z. Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection. Aging Cell. 2015;14:400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Toth P, Tucsek Z, Sosnowska D, Gautam T, Mitschelen M, Tarantini S, Deak F, Koller A, Sonntag WE, Csiszar A, Ungvari Z. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab. 2013;33:1732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wakisaka Y, Chu Y, Miller JD, Rosenberg GA, Heistad DD. Critical role for copper/zinc-superoxide dismutase in preventing spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice. Stroke. 2010;41:790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wakisaka Y, Chu Y, Miller JD, Rosenberg GA, Heistad DD. Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice. J Cereb Blood Flow Metab. 2010;30:56–69.

    Article  CAS  PubMed  Google Scholar 

  22. Tarantini S, Valcarcel-Ares NM, Yabluchanskiy A, Springo Z, Fulop GA, Ashpole N, Gautam T, Giles CB, Wren JD, Sonntag WE, Csiszar A, Ungvari Z. Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype. Aging Cell. 2017;16:469–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nyul-Toth A, Tarantini S, Kiss T, Toth P, Galvan V, Tarantini A, Yabluchanskiy A, Csiszar A, Ungvari Z. Increases in hypertension-induced cerebral microhemorrhages exacerbate gait dysfunction in a mouse model of Alzheimer’s disease. Geroscience. 2020

  24. Sumbria RK, Grigoryan MM, Vasilevko V, Krasieva TB, Scadeng M, Dvornikova AK, Paganini-Hill A, Kim R, Cribbs DH, Fisher MJ. A murine model of inflammation-induced cerebral microbleeds. J Neuroinflammation. 2016;13:218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Rotta J, Perosa V, Yakupov R, Kuijf HJ, Schreiber F, Dobisch L, Oltmer J, Assmann A, Speck O, Heinze HJ, Acosta-Cabronero J, Duzel E, Schreiber S. Detection of cerebral microbleeds with venous connection at 7-Tesla MRI. Neurology. 2021;96:e2048–57.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang R, Li Q, Zhou Y, Yan S, Zhang M, Lou M. The relationship between deep medullary veins score and the severity and distribution of intracranial microbleeds. Neuroimage Clin. 2019;23:101830

  27. Greco A, Auletta L, Coda AR, Baldi A, Montanaro D, Albanese S, Pappatà S, Mancini M. Bilateral jugular veins occlusion in mice: clinical and histological findings. J Transl Sci. 2020;6:3–6.

    Google Scholar 

  28. Sagi B, Peti A, Lakatos O, Gyimesi T, Sulyok E, Wittmann I, Csiky B. Pro- and anti-inflammatory factors, vascular stiffness and outcomes in chronic hemodialysis patients. Physiol Int. 2020

  29. Sumida K, Kovesdy CP. The gut-kidney-heart axis in chronic kidney disease. Physiol Int. 2019;106:195–206.

    Article  CAS  PubMed  Google Scholar 

  30. Sprick JD, Nocera JR, Hajjar I, O’Neill WC, Bailey J, Park J. Cerebral blood flow regulation in end-stage kidney disease. Am J Physiol Renal Physiol. 2020;319:F782–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nagaraja N, Farooqui A, Bin Zahid A, Kaur S. Factors associated with the presence of cerebral microbleeds and its influence on outcomes of stroke not treated with alteplase. Clin Neurol Neurosurg. 2021;207:106798

  32. Alosco ML, Brickman AM, Spitznagel MB, van Dulmen M, Raz N, Cohen R, Sweet LH, Colbert LH, Josephson R, Hughes J, Rosneck J, Gunstad J. The independent association of hypertension with cognitive function among older adults with heart failure. J Neurol Sci. 2012;323:216–20.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bartek J Jr, Abedi-Valugerdi G, Liska J, Nystrom H, Andresen M, Mathiesen T. Intracranial hemorrhage due to intracranial hypertension caused by the superior vena cava syndrome. J Clin Neurosci. 2013;20:1040–1.

    Article  PubMed  Google Scholar 

  34. Haji S, Planchard R, Zubair A, Graff-Radford J, Rydberg C, Brown RD Jr, Flemming KD. The clinical relevance of cerebral microbleeds in patients with cerebral ischemia and atrial fibrillation. J Neurol. 2016;263:238–44.

    Article  CAS  PubMed  Google Scholar 

  35. Silva R, Miranda CM, Liu T, Tse G, Roever L. Atrial fibrillation and risk of dementia: epidemiology, mechanisms, and effect of anticoagulation. Front Neurosci. 2019;13:18.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wilson D, Ambler G, Shakeshaft C, Brown MM, Charidimou A, Al-Shahi Salman R, Lip GYH, Cohen H, Banerjee G, Houlden H, White MJ, Yousry TA, Harkness K, Flossmann E, Smyth N, Shaw LJ, Warburton E, Muir KW, Jager HR, Werring DJ and collaborators C-. Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischaemic attack (CROMIS-2): a multicentre observational cohort study. Lancet Neurol. 2018;17:539–547

  37. Lepori D, Capasso P, Fournier D, Genton CY, Schnyder P. High-resolution ultrasound evaluation of internal jugular venous valves. Eur Radiol. 1999;9:1222–6.

    Article  CAS  PubMed  Google Scholar 

  38. Dhanger S, Vaidiyanathan B, Tripathy DK. Internal jugular venous valve: well known but mostly neglected. Indian J Anaesth. 2016;60:602–3.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen K, Wang L, Wang Q, Liu X, Lu Y, Li Y, Wong GTC. Effects of pneumoperitoneum and steep Trendelenburg position on cerebral hemodynamics during robotic-assisted laparoscopic radical prostatectomy: a randomized controlled study. Medicine (Baltimore). 2019;98:e15794

  40. Uchino A, Nomiyama K, Takase Y, Nakazono T, Tominaga Y, Imaizumi T, Kudo S. Retrograde flow in the dural sinuses detected by three-dimensional time-of-flight MR angiography. Neuroradiology. 2007;49:211–5.

    Article  PubMed  Google Scholar 

  41. Inano S, Itoh D, Takao H, Hayashi N, Mori H, Kunimatsu A, Abe O, Aoki S, Ohtomo K. High signal intensity in the dural sinuses on 3D-TOF MR angiography at 30 T. Clin Imaging. 2010;34:332–6.

    Article  PubMed  Google Scholar 

  42. Kudo K, Terae S, Ishii A, Omatsu T, Asano T, Tha KK, Miyasaka K. Physiologic change in flow velocity and direction of dural venous sinuses with respiration: MR venography and flow analysis. AJNR Am J Neuroradiol. 2004;25:551–7.

    PubMed  PubMed Central  Google Scholar 

  43. Jang J, Kim BS, Kim BY, Choi HS, Jung SL, Ahn KJ, Byun JY. Reflux venous flow in dural sinus and internal jugular vein on 3D time-of-flight MR angiography. Neuroradiology. 2013;55:1205–11.

    Article  PubMed  Google Scholar 

  44. Kang Y, Kim E, Kim JH, Choi BS, Jung C, Bae YJ, Lee KM, Lee DH. Time of flight MR angiography assessment casts doubt on the association between transient global amnesia and intracranial jugular venous reflux. Eur Radiol. 2015;25:703–9.

    Article  PubMed  Google Scholar 

  45. Kim E, Kim JH, Choi BS, Jung C, Lee DH. MRI and MR angiography findings to differentiate jugular venous reflux from cavernous dural arteriovenous fistula. AJR Am J Roentgenol. 2014;202:839–46.

    Article  PubMed  Google Scholar 

  46. Ungvari Z, Yabluchanskiy A, Tarantini S, Toth P, Kirkpatrick AC, Csiszar A, Prodan CI. Repeated Valsalva maneuvers promote symptomatic manifestations of cerebral microhemorrhages: implications for the pathogenesis of vascular cognitive impairment in older adults. Geroscience. 2018;40:485–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zivadinov R, Chung CP. Potential involvement of the extracranial venous system in central nervous system disorders and aging. BMC Med. 2013;11:260.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Valecchi D, Bacci D, Gulisano M, Sgambati E, Sibilio M, Lipomas M, Macchi C. Internal jugular vein valves: an assessment of prevalence, morphology and competence by color Doppler echography in 240 healthy subjects. Ital J Anat Embryol. 2010;115:185–9.

    PubMed  Google Scholar 

  49. Akkawi NM, Agosti C, Borroni B, Rozzini L, Magoni M, Vignolo LA, Padovani A. Jugular valve incompetence: a study using air contrast ultrasonography on a general population. J Ultrasound Med. 2002;21:747–51.

    Article  PubMed  Google Scholar 

  50. Donnet A, Valade D, Houdart E, Lanteri-Minet M, Raffaelli C, Demarquay G, Hermier M, Guegan-Massardier E, Gerardin E, Geraud G, Cognard C, Levrier O, Lehmann P. Primary cough headache, primary exertional headache, and primary headache associated with sexual activity: a clinical and radiological study. Neuroradiology. 2013;55:297–305.

    Article  PubMed  Google Scholar 

  51. Ungvari Z, Yabluchanskiy A, Tarantini S, Toth P, Kirkpatrick AC, Csiszar A, Prodan CI. Repeated Valsalva maneuvers promote symptomatic manifestations of cerebral microhemorrhages: implications for the pathogenesis of vascular cognitive impairment in older adults. Geroscience. 2018

  52. Sharpey-Schafer EP. The mechanism of syncope after coughing. Br Med J. 1953;2:860–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wysoki MG, Covey A, Pollak J, Rosenblatt M, Aruny J, Denbow N. Evaluation of various maneuvers for prevention of air embolism during central venous catheter placement. J Vasc Interv Radiol. 2001;12:764–6.

    Article  CAS  PubMed  Google Scholar 

  54. Chung CP, Beggs C, Wang PN, Bergsland N, Shepherd S, Cheng CY, Ramasamy DP, Dwyer MG, Hu HH, Zivadinov R. Jugular venous reflux and white matter abnormalities in Alzheimer’s disease: a pilot study. J Alzheimers Dis. 2014;39:601–9.

    Article  PubMed  Google Scholar 

  55. Zivadinov R. Is there a link between the extracranial venous system and central nervous system pathology? BMC Med. 2013;11:259.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fisher J, Vaghaiwalla F, Tsitlik J, Levin H, Brinker J, Weisfeldt M, Yin F. Determinants and clinical significance of jugular venous valve competence. Circulation. 1982;65:188–96.

    Article  CAS  PubMed  Google Scholar 

  57. Cejas C, Cisneros LF, Lagos R, Zuk C, Ameriso SF. Internal jugular vein valve incompetence is highly prevalent in transient global amnesia. Stroke. 2010;41:67–71.

    Article  PubMed  Google Scholar 

  58. Doepp F, Bahr D, John M, Hoernig S, Valdueza JM, Schreiber SJ. Internal jugular vein valve incompetence in COPD and primary pulmonary hypertension. J Clin Ultrasound. 2008;36:480–4.

    Article  PubMed  Google Scholar 

  59. Liu H, Cao X, Zhang M, He M, Li M, Song Y, Dong Z, Yu S. A case report of cough headache with transient elevation of intracranial pressure and bilateral internal jugular vein valve incompetence: a primary or secondary headache? Cephalalgia. 2018;38:600–3.

    Article  PubMed  Google Scholar 

  60. Al-Mujaini AS, Montana CC. Valsalva retinopathy in pregnancy: a case report. J Med Case Rep. 2008;2:101.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chapman-Davies A, Lazarevic A. Valsalva maculopathy. Clin Exp Optom. 2002;85:42–5.

    Article  PubMed  Google Scholar 

  62. Duane TD. Valsalva hemorrhagic retinopathy. Trans Am Ophthalmol Soc. 1972;70:298–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. van Meurs JC, van den Bosch WA. Suprachoroidal hemorrhage following a Valsalva maneuver. Arch Ophthalmol. 1993;111:1025–6.

    Article  PubMed  Google Scholar 

  64. Baumal CR, Ponugoti A, Enriquez AB, Vajzovic L. Valsalva-induced retinal hemorrhage as a secondary effect of COVID-19 disease. Asia Pac J Ophthalmol (Phila). 2021;10:125–6.

    Article  Google Scholar 

  65. V GM, Velis G. A unique case of bilateral valsalva retinopathy. J Ophthalmic Vis Res. 2019;14:528–9.

    Google Scholar 

  66. Schlesinger B. The venous drainage of the brain, with special reference to the galenic system. Brain. 1939;62:274–91.

    Article  Google Scholar 

  67. Pabaney AH, Reinard KA, Kole MK, Seyfried DM, Malik GM. Management of arteriovenous malformations in the elderly: a single-center case series and analysis of outcomes. J Neurosurg. 2016;125:145–51.

    Article  CAS  PubMed  Google Scholar 

  68. Guo Y, Saunders T, Su H, Kim H, Akkoc D, Saloner DA, Hetts SW, Hess C, Lawton MT, Bollen AW, Pourmohamad T, McCulloch CE, Tihan T, Young WL and University of California SFBAMSP. Silent intralesional microhemorrhage as a risk factor for brain arteriovenous malformation rupture. Stroke. 2012;43:1240–6

  69. da Costa L, Wallace MC, Ter Brugge KG, O’Kelly C, Willinsky RA, Tymianski M. The natural history and predictive features of hemorrhage from brain arteriovenous malformations. Stroke. 2009;40:100–5.

    Article  PubMed  Google Scholar 

  70. Chen CJ, Ding D, Derdeyn CP, Lanzino G, Friedlander RM, Southerland AM, Lawton MT, Sheehan JP. Brain arteriovenous malformations: a review of natural history, pathobiology, and interventions. Neurology. 2020;95:917–27.

    Article  PubMed  Google Scholar 

  71. Goldberg J, Raabe A, Bervini D. Natural history of brain arteriovenous malformations: systematic review. J Neurosurg Sci. 2018;62:437–43.

    Article  PubMed  Google Scholar 

  72. Armstrong M Jr, Strack GB. Recognition and documentation of strangulation crimes: a review. JAMA Otolaryngol Head Neck Surg. 2016;142:891–7.

    Article  PubMed  Google Scholar 

  73. Plattner T, Bolliger S, Zollinger U. Forensic assessment of survived strangulation. Forensic Sci Int. 2005;153:202–7.

    Article  CAS  PubMed  Google Scholar 

  74. Yen K, Vock P, Christe A, Scheurer E, Plattner T, Schon C, Aghayev E, Jackowski C, Beutler V, Thali MJ, Dirnhofer R. Clinical forensic radiology in strangulation victims: forensic expertise based on magnetic resonance imaging (MRI) findings. Int J Legal Med. 2007;121:115–23.

    Article  PubMed  Google Scholar 

  75. Hashimoto T, Wen G, Lawton MT, Boudreau NJ, Bollen AW, Yang GY, Barbaro NM, Higashida RT, Dowd CF, Halbach VV, Young WL and University of California SFBSG. Abnormal expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in brain arteriovenous malformations. Stroke. 2003;34:925–31

  76. Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol. 2017;312:H1–20.

    Article  PubMed  Google Scholar 

  77. Toth P, Tucsek Z, Tarantini S, Sosnowska D, Gautam T, Mitschelen M, Koller A, Sonntag WE, Csiszar A, Ungvari Z. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab. 2014;34:1887–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Springo Z, Toth P, Tarantini S, Ashpole NM, Tucsek Z, Sonntag WE, Csiszar A, Koller A, Ungvari ZI. Aging impairs myogenic adaptation to pulsatile pressure in mouse cerebral arteries. J Cereb Blood Flow Metab. 2015;35:527–30.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Toth P, Csiszar A, Tucsek Z, Sosnowska D, Gautam T, Koller A, Schwartzman ML, Sonntag WE, Ungvari Z. Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. Am J Physiol Heart Circ Physiol. 2013;305:H1698–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shams S, Martola J, Granberg T, Li X, Shams M, Fereshtehnejad SM, Cavallin L, Aspelin P, Kristoffersen-Wiberg M, Wahlund LO. Cerebral microbleeds: different prevalence, topography, and risk factors depending on dementia diagnosis-the Karolinska Imaging Dementia Study. AJNR Am J Neuroradiol. 2015;36:661–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gokhale S, Caplan LR, James ML. Sex differences in incidence, pathophysiology, and outcome of primary intracerebral hemorrhage. Stroke. 2015;46:886–92.

    Article  PubMed  Google Scholar 

  82. Sakata K, Endo Y, Kimura F, Yamamoto I. Effects of bilateral jugular vein ligation on local cerebral blood flow. Skull Base Surg. 1999;9:207–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kotani J, Nitta K, Sakuma Y, Sugioka S, Fujita N, Ueda Y. Effects of bilateral jugular vein ligation on intracranial pressure and cerebrospinal fluid outflow resistance in cats. Br J Oral Maxillofac Surg. 1992;30:171–3.

    Article  CAS  PubMed  Google Scholar 

  84. Kawajiri H, Furuse M, Namba R, Kotani J, Oka T. Effect of internal jugular vein ligation on resorption of cerebrospinal fluid. J Maxillofac Surg. 1983;11:42–5.

    Article  CAS  PubMed  Google Scholar 

  85. Weiss KL, Wax MK, Haydon RC 3rd, Kaufman HH, Hurst MK. Intracranial pressure changes during bilateral radical neck dissections. Head Neck. 1993;15:546–52.

    Article  CAS  PubMed  Google Scholar 

  86. Ensari S, Kaptanoglu E, Tun K, Gun T, Beskonakli E, Celikkanat S, Dere H, Cekirge S. Venous outflow of the brain after bilateral complete jugular ligation. Turk Neurosurg. 2008;18:56–60.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the American Heart Association (AHA834339), the Oklahoma Center for the Advancement of Science and Technology, the National Institute on Aging (R01-AG055395, R01-AG047879; R01-AG038747; K01-AG073614), the National Institute of Neurological Disorders and Stroke (NINDS; R01-NS100782, R01-NS056218), a Pilot Grant from the Stephenson Cancer Center funded by the National Cancer Institute Cancer Center Support Grant P30CA225520 awarded to the University of Oklahoma Stephenson Cancer Center, the Oklahoma Shared Clinical and Translational Resources (OSCTR) program funded by the National Institute of General Medical Sciences (U54GM104938), the Presbyterian Health Foundation, the European Union–funded grants EFOP-3.6.1–16-2016–00008, 20765–3/2018/FEKUTSTRAT, EFOP-3.6.2.-16–2017-00008, GINOP-2.3.2–15-2016–00048, and GINOP-2.3.3–15-2016–00032; the National Research, Development and Innovation Office (NKFI-FK123798; Nemzeti Szivlabor), the Hungarian Academy of Sciences (Bolyai Research Scholarship BO/00634/15), and the ÚNKP-18–4-PTE-6 New National Excellence Program of the Ministry of Human Capacities (to PT). The Thematic Excellence Programme of the Ministry for Innovation and Technology was also supported by the National Research, Development and Innovation Fund of Hungary (Nos. TKP2020-IKA-04 and TKP2020-NKA-04) within the frameworks of the preclinical thematic programme of the University of Debrecen. The authors acknowledge the support from the NIA-funded Geroscience Training Program in Oklahoma (T32AG052363). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Nyul-Toth.

Ethics declarations

Competing interests

Dr. Anna Csiszar serves as Associate Editor for The Journal of Gerontology, Series A: Biological Sciences and Medical Sciences and GeroScience. Dr. Stefano Tarantini serves as Guest Editor for Frontiers in Aging Neuroscience. Dr. Zoltan Ungvari serves as Editor-in-Chief for GeroScience and as Consulting Editor for The American Journal of Physiology-Heart and Circulatory Physiology.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyul-Toth, A., Fulop, G.A., Tarantini, S. et al. Cerebral venous congestion exacerbates cerebral microhemorrhages in mice. GeroScience 44, 805–816 (2022). https://doi.org/10.1007/s11357-021-00504-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00504-0

Keywords

Navigation