Skip to main content

Advertisement

Log in

ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Activity-dependent neuroprotective protein (ADNP) is essential for embryonic development with ADNP mutations leading to syndromic autism, coupled with intellectual disabilities and motor developmental delays. Here, mining human muscle gene-expression databases, we have investigated the association of ADNP transcripts with muscle aging. We discovered increased ADNP and its paralogue ADNP2 expression in the vastus lateralis muscle of aged compared to young subjects, as well as altered expression of the ADNP and the ADNP2 genes in bicep brachii muscle of elderly people, in a sex-dependent manner. Prolonged exercise resulted in decreased ADNP expression, and increased ADNP2 expression in an age-dependent manner in the vastus lateralis muscle. ADNP expression level was further correlated with 49 genes showing age-dependent changes in muscle transcript expression. A high degree of correlation with ADNP was discovered for 24 genes with the leading gene/protein being NMNAT1 (nicotinamide nucleotide adenylyl transferase 1). Looking at correlations differentiating the young and the old muscles and comparing protein interactions revealed an association of ADNP with the cell division cycle 5-like protein (CDC5L), and an aging-muscle–related interactive pathway in the vastus lateralis. In the bicep brachii, very high correlation was detected with genes associated with immune functions as well as mitochondrial structure and function among others. Taken together, the results suggest a direct association of ADNP with muscle strength and implicate ADNP fortification in the protection against age-associated muscle wasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnett AB, Rhoads CL, Hoekzema K, Turner TN, Gerdts J, Wallace AS, Bedrosian-Sermone S, Eichler EE, Bernier RA (2018) The autism spectrum phenotype in ADNP syndrome. Autism Res 11(9):1300–1310

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassan M, Zamostiano R, Davidson A, Pinhasov A, Giladi E, Perl O, Bassan H, Blat C, Gibney G, Glazner G, Brenneman DE, Gozes I (1999) Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J Neurochem 72(3):1283–1293

    Article  CAS  PubMed  Google Scholar 

  • Berger F, Lau C, Dahlmann M, Ziegler M (2005a) Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem 280(43):36334–36341

    Article  CAS  PubMed  Google Scholar 

  • Berger F, Lau C, Dahlmann M, Ziegler M (2005b) Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem 280(43):36334–36341

    Article  CAS  PubMed  Google Scholar 

  • Braitch M, Kawabe K, Nyirenda M, Gilles LJ, Robins RA, Gran B, Murphy S, Showe L, Constantinescu CS (2010) Expression of activity-dependent neuroprotective protein in the immune system: possible functions and relevance to multiple sclerosis. Neuroimmunomodulation 17(2):120–125

    Article  CAS  PubMed  Google Scholar 

  • Buford TW, Anton SD, Judge AR, Marzetti E, Wohlgemuth SE, Carter CS, Leeuwenburgh C, Pahor M, Manini TM (2010) Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res Rev 9(4):369–383

    Article  PubMed  PubMed Central  Google Scholar 

  • Conboy IM, Rando TA (2012) Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle 11(12):2260–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui QQ, Xie P (2016) Correlation between Daam2 expression changes and demyelination in Guillain-Barre syndrome. Cell Mol Neurobiol 36(5):683–688

    Article  CAS  PubMed  Google Scholar 

  • Dresner E, Agam G, Gozes I (2011) Activity-dependent neuroprotective protein (ADNP) expression level is correlated with the expression of the sister protein ADNP2: deregulation in schizophrenia. Eur Neuropsychopharmacol 21(5):355–361

    Article  CAS  PubMed  Google Scholar 

  • Dresner E, Malishkevich A, Arviv C, Leibman Barak S, Alon S, Ofir R, Gothilf Y, Gozes I (2012) Novel evolutionary-conserved role for the activity-dependent neuroprotective protein (ADNP) family that is important for erythropoiesis. J Biol Chem 287(48):40173–40185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsaid MF, Ibrahim K, Chalhoub N, Elsotouhy A, El Mudehki N, Abdel Aleem A (2017) NT5C2 novel splicing variant expands the phenotypic spectrum of spastic paraplegia (SPG45): case report of a new member of thin corpus callosum SPG-subgroup. BMC Med Genet 18(1):33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evans WJ (1995) Effects of exercise on body composition and functional capacity of the elderly. J Gerontol A Biol Sci Med Sci 50 Spec No 147–150

  • Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP, Bohr VA (2017a) NAD(+) in aging: molecular mechanisms and translational implications. Trends Mol Med 23(10):899–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang EF, Lautrup S, Hou YJ, Demarest TG, Croteau DL, Mattson MP, Bohr VA (2017b) NAD(+) in aging: molecular mechanisms and translational implications. Trends Mol Med 23(10):899–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisel P, Schaeffeler E, Schwab M (2018) Clinical and functional relevance of the monocarboxylate transporter family in disease pathophysiology and drug therapy. Cts-Clin Transl Sci 11(4):352–364

    Article  Google Scholar 

  • Furman S, Steingart RA, Mandel S, Hauser JM, Brenneman DE, Gozes I (2004) Subcellular localization and secretion of activity-dependent neuroprotective protein in astrocytes. Neuron Glia Biol 1(3):193–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Gozes I (2011) NAP (davunetide) provides functional and structural neuroprotection. Curr Pharm Des 17(10):1040–1044

    Article  CAS  PubMed  Google Scholar 

  • Gozes I, Helsmoortel C, Vandeweyer G, Van der Aa N, Kooy F, Sermone SB (2015) The compassionate side of neuroscience: Tony Sermone’s undiagnosed genetic journey—ADNP mutation. J Mol Neurosci 56(4):751–757

    Article  CAS  PubMed  Google Scholar 

  • Gozes I, Ivashko-Pachima Y (2015) ADNP: in search for molecular mechanisms and innovative therapeutic strategies for frontotemporal degeneration. Front Aging Neurosci 7(205)

  • Gozes I, Patterson MC, Van Dijck A, Kooy RF, Peeden JN, Eichenberger JA, Zawacki-Downing A, Bedrosian-Sermone S (2017a) The eight and a half year journey of undiagnosed AD: gene sequencing and funding of advanced genetic testing has led to Hope and new beginnings. Front Endocrinol 8(107)

  • Gozes I, Van Dijck A, Hacohen-Kleiman G, Grigg I, Karmon G, Giladi E, Eger M, Gabet Y, Pasmanik-Chor M, Cappuyns E, Elpeleg O, Kooy RF, Bedrosian-Sermone S (2017b) Premature primary tooth eruption in cognitive/motor-delayed ADNP-mutated children. Transl Psychiatry 7(2):e1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacohen-Kleiman G, Sragovich S, Karmon G, Gao AYL, Grigg I, Pasmanik-Chor M, Le A, Korenkova V, McKinney RA, Gozes I (2018) Activity-dependent neuroprotective protein deficiency models synaptic and developmental phenotypes of autism-like syndrome. J Clin Invest 128(11):4956–4969

    Article  PubMed  PubMed Central  Google Scholar 

  • Hales CM, Griner R, Hobdy-Henderson KC, Dorn MC, Hardy D, Kumar R, Navarre J, Chan EKL, Lapierre LA, Goldenring JR (2001) Identification and characterization of a family of Rab11-interacting proteins. J Biol Chem 276(42):39067–39075

    Article  CAS  PubMed  Google Scholar 

  • Haslett JN, Sanoudou D, Kho AT, Bennett RR, Greenberg SA, Kohane IS, Beggs AH, Kunkel LM (2002a) Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. P Natl Acad Sci USA 99(23):15000–15005

    Article  CAS  Google Scholar 

  • Haslett JN, Sanoudou D, Kho AT, Bennett RR, Greenberg SA, Kohane IS, Beggs AH, Kunkel LM (2002b) Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proc Natl Acad Sci U S A 99(23):15000–15005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi S, Manabe I, Suzuki Y, Relaix F, Oishi Y (2016) Klf5 regulates muscle differentiation by directly targeting muscle-specific genes in cooperation with MyoD in mice. eLife 5

  • Helsmoortel C, Vulto-van Silfhout AT, Coe BP, Vandeweyer G, Rooms L, van den Ende J, Schuurs-Hoeijmakers JH, Marcelis CL, Willemsen MH, Vissers LE, Yntema HG, Bakshi M, Wilson M, Witherspoon KT, Malmgren H, Nordgren A, Anneren G, Fichera M, Bosco P, Romano C, de Vries BB, Kleefstra T, Kooy RF, Eichler EE, Van der Aa N (2014) A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat Genet 46(4):380–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinkle RT, Donnelly E, Cody DB, Sheldon RJ, Isfort RJ (2005) Activation of the vasoactive intestinal peptide 2 receptor modulates normal and atrophying skeletal muscle mass and force. J Appl Physiol 98(2):655–662

    Article  CAS  PubMed  Google Scholar 

  • Horgan CP, Oleksy A, Zhdanov AV, Lall PY, White IJ, Khan AR, Futter CE, McCaffrey JG, McCaffrey MW (2007) Rab11-FIP3 is critical for the structural integrity of the endosomal recycling compartment. Traffic 8(4):414–430

    Article  CAS  PubMed  Google Scholar 

  • Horgan CP, Walsh M, Zurawski TH, McCaffrey MW (2004) Rab11-FIP3 localises to a Rab11-positive pericentrosomal compartment during interphase and to the cleavage furrow during cytokinesis. Biochem Bioph Res Co 319(1):83–94

    Article  CAS  Google Scholar 

  • Hwang BJ, Ford JM, Hanawalt PC, Chu G (1999) Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. P Natl Acad Sci USA 96(2):424–428

    Article  CAS  Google Scholar 

  • Inoki T, Yamagami S, Inoki Y, Tsuru T, Hamamoto T, Kagawa Y, Mori T, Endo H (2004) Human DDB2 splicing variants are dominant negative inhibitors of UV-damaged DNA repair. Biochem Bioph Res Co 314(4):1036–1043

    Article  CAS  Google Scholar 

  • Inoue H, Ha VL, Prekeris R, Randazzo PA (2008) Arf GTPase-activating protein ASAP1 interacts with Rab11 effector FIP3 and regulates pericentrosomal localization of transferrin receptor-positive recycling endosome. Mol Biol Cell 19(10):4224–4237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh R, Mitsui A, Tsushima K (1967) 5’-Nucleotidase of chicken liver. Biochim Biophys Acta 146(1):151–159

    Article  CAS  PubMed  Google Scholar 

  • Johnson S, Imai SI (2018) NAD (+) biosynthesis, aging, and disease. F1000Research 7:132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juel C, Halestrap AP (1999) Lactate transport in skeletal muscle—role and regulation of the monocarboxylate transporter. J Physiol-London 517(3):633–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juma AR, Damdimopoulou PE, Grommen SVH, Van de Ven WJM, De Groef B (2016) Emerging role of PLAG1 as a regulator of growth and reproduction. J Endocrinol 228(2):R45–R56

    Article  CAS  PubMed  Google Scholar 

  • Kalyani RR, Corriere M, Ferrucci L (2014) Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol 2(10):819–829

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller K, Engelhardt M (2013) Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons 3(4):346–350

    Article  Google Scholar 

  • Koles K, Budnik V (2012) Wnt signaling in neuromuscular junction development. Csh Perspect Biol 4(6)

  • Kushnir M, Dresner E, Mandel S, Gozes I (2008) Silencing of the ADNP-family member, ADNP2, results in changes in cellular viability under oxidative stress. J Neurochem 105(2):537–545

    Article  CAS  PubMed  Google Scholar 

  • Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, Nair KS (2008) Endurance exercise as a countermeasure for aging. Diabetes 57(11):2933–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HK, Deneen B (2012) Daam2 is required for dorsal patterning via modulation of canonical Wnt signaling in the developing spinal cord. Dev Cell 22(1):183–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Sartor MA, Nader GA, Pistilli EE, Tanton L, Lilly C, Gutmann L, IglayReger HB, Visich PS, Hoffman EP, Gordon PM (2013) Microarray analysis reveals novel features of the muscle aging process in men and women. The journals of gerontology Series A. Biol Sci Med Sci 68(9):1035–1044

    Google Scholar 

  • Malishkevich A, Amram N, Hacohen-Kleiman G, Magen I, Giladi E, Gozes I (2015a) Activity-dependent neuroprotective protein (ADNP) exhibits striking sexual dichotomy impacting on autistic and Alzheimer’s pathologies. Transl Psychiatry 5:e501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malishkevich A, Leyk J, Goldbaum O, Richter-Landsberg C, Gozes I (2015b) ADNP/ADNP2 expression in oligodendrocytes: implication for myelin-related neurodevelopment. J Mol Neurosci 57(2):304–313

    Article  CAS  PubMed  Google Scholar 

  • Malishkevich A, Marshall GA, Schultz AP, Sperling RA, Aharon-Peretz J, Gozes I (2016) Blood-borne activity-dependent neuroprotective protein (ADNP) is correlated with premorbid intelligence, clinical stage, and Alzheimer’s disease biomarkers. J Alzheimers Dis 50(1):249–260

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Gozes I (2007) Activity-dependent neuroprotective protein constitutes a novel element in the SWI/SNF chromatin remodeling complex. J Biol Chem 282(47):34448–34456

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Rechavi G, Gozes I (2007) Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate genes essential for embryogenesis. Dev Biol 303(2):814–824

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Spivak-Pohis I, Gozes I (2008) ADNP differential nucleus/cytoplasm localization in neurons suggests multiple roles in neuronal differentiation and maintenance. J Mol Neurosci 35(2):127–141

    Article  CAS  PubMed  Google Scholar 

  • Merenlender-Wagner A, Malishkevich A, Shemer Z, Udawela M, Gibbons A, Scarr E, Dean B, Levine J, Agam G, Gozes I (2015) Autophagy has a key role in the pathophysiology of schizophrenia. Mol Psychiatry 20(1):126–132

    Article  CAS  PubMed  Google Scholar 

  • Mollinedo P, Kapitansky O, Gonzalez-Lamuno D, Zaslavsky A, Real P, Gozes I, Gandarillas A, Fernandez-Luna JL (2019) Cellular and animal models of skin alterations in the autism-related ADNP syndrome. Sci Rep 9(1):736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morley JE, Anker SD, von Haehling S (2014) Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology-update 2014. J Cachexia Sarcopenia Muscle 5(4):253–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulligan KA, Cheyette BNR (2012) Wnt signaling in vertebrate neural development and function. J NeuroImmune Pharmacol 7(4):774–787

    Article  PubMed  PubMed Central  Google Scholar 

  • Okerlund ND, Cheyette BNR (2011) Synaptic Wnt signaling-a contributor to major psychiatric disorders? J Neurodev Disord 3(2):162–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Pascual M, Guerri C (2007) The peptide NAP promotes neuronal growth and differentiation through extracellular signal-regulated protein kinase and Akt pathways, and protects neurons co-cultured with astrocytes damaged by ethanol. J Neurochem 103(2):557–568

    Article  CAS  PubMed  Google Scholar 

  • Pesi R, Turriani M, Allegrini S, Scolozzi C, Camici M, Ipata PL, Tozzi MG (1994) The bifunctional cytosolic 5’-nucleotidase—regulation of the phosphotransferase and nucleotidase activities. Arch Biochem Biophys 312(1):75–80

    Article  CAS  PubMed  Google Scholar 

  • Pinhasov A, Mandel S, Torchinsky A, Giladi E, Pittel Z, Goldsweig AM, Servoss SJ, Brenneman DE, Gozes I (2003) Activity-dependent neuroprotective protein: a novel gene essential for brain formation. Brain Res Dev Brain Res 144(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Quintana FJ, Zaltzman R, Fernandez-Montesinos R, Herrera JL, Gozes I, Cohen IR, Pozo D (2006) NAP, a peptide derived from the activity-dependent neuroprotective protein, modulates macrophage function. Annals of the New York Academy of Sciences 1070 500–506

  • Randitelli S, Baiocchi C, Pesi R, Allegrini S, Turriani M, Ipata PL, Camici M, Tozzi MG (1996) The phosphotransferase activity of cytosolic 5′-nucleotidase: a purine analog phosphorylating enzyme. Int J Biochem Cell B 28(6):711–720

    Article  Google Scholar 

  • Raue U, Trappe TA, Estrem ST, Qian HR, Helvering LM, Smith RC, Trappe S (2012) Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J Appl Physiol 112(10):1625–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C (2015a) Developmental myosins: expression patterns and functional significance. Skelet Muscle 5:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C (2015b) Developmental myosins: expression patterns and functional significance. Skelet Muscle 5(22):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siatecka M, Bieker JJ (2011) The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood 118(8):2044–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigalov E, Fridkin M, Brenneman DE, Gozes I (2000) VIP-related protection against lodoacetate toxicity in pheochromocytoma (PC12) cells: a model for ischemic/hypoxic injury. J Mol Neurosci 15(3):147–154

    Article  CAS  PubMed  Google Scholar 

  • Siparsky PN, Kirkendall DT, Garrett WE, Jr. (2014) Muscle changes in aging: understanding sarcopenia. Sports Health 6 (1):36–40

  • Sontheimer RD, Racila E, Racila DM (2005) C1q: its functions within the innate and adaptive immune responses and its role in lupus autoimmunity. J Invest Dermatol 125(1):14–23

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasan P, Peedikayil FC, Raj SV, Meundi MA (2013) Trismus pseudocamptodactyly syndrome: a sporadic cause of trismus. Case reports in dentistry 2013:187571

    Article  PubMed  PubMed Central  Google Scholar 

  • Stamatakou E, Salinas PC (2014) Postsynaptic assembly: a role for Wnt signaling. Dev Neurobiol 74(8):818–827

    CAS  PubMed  Google Scholar 

  • Straussberg R, Onoufriadis A, Konen O, Zouabi Y, Cohen L, Lee JYW, Hsu CK, Simpson MA, McGrath JA (2017) Novel homozygous missense mutation in NT5C2 underlying hereditary spastic paraplegia SPG45. Am J Med Genet A 173(11):3109–3113

    Article  CAS  PubMed  Google Scholar 

  • Tozzi MG, Camici M, Pesi R, Allegrini S, Sgarrella F, Ipata PL (1991) Nucleoside phosphotransferase activity of human colon-carcinoma cytosolic 5’-nucleotidase. Arch Biochem Biophys 291(2):212–217

    Article  CAS  PubMed  Google Scholar 

  • Van Dijck A, Vulto-van Silfhout AT, Cappuyns E, van der Werf IM, Mancini GM, Tzschach A, Bernier R, Gozes I, Eichler EE, Romano C, Lindstrand A, Nordgren A, Consortium A, Kvarnung M, Kleefstra T, de Vries BBA, Kury S, Rosenfeld JA, Meuwissen ME, Vandeweyer G, Kooy RF (2019) Clinical presentation of a complex neurodevelopmental disorder caused by mutations in ADNP. Biol Psychiatry 85(4):287–297

    Article  PubMed  Google Scholar 

  • Veugelers M, Bressan M, McDermott DA, Weremowicz S, Morton CC, Mabry CC, Lefaivre JF, Zunamon A, Destree A, Chaudron JM, Basson CT (2004) Mutation of perinatal myosin heavy chain associated with a Carney complex variant. N Engl J Med 351(5):460–469

    Article  CAS  PubMed  Google Scholar 

  • Viprakasit V, Ekwattanakit S, Riolueang S, Chalaow N, Fisher C, Lower K, Kanno H, Tachavanich K, Bejrachandra S, Saipin J, Juntharaniyom M, Sanpakit K, Tanphaichitr VS, Songdej D, Babbs C, Gibbons RJ, Philipsen S, Higgs DR (2014) Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression. Blood 123(10):1586–1595

    Article  CAS  PubMed  Google Scholar 

  • Vulih-Shultzman I, Pinhasov A, Mandel S, Grigoriadis N, Touloumi O, Pittel Z, Gozes I (2007) Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model. J Pharmacol Exp Ther 323(2):438–449

    Article  CAS  PubMed  Google Scholar 

  • Welle S, Brooks AI, Delehanty JM, Needler N, Bhatt K, Shah B, Thornton CA (2004) Skeletal muscle gene expression profiles in 20-29 year old and 65-71 year old women. Exp Gerontol 39(3):369–377

    Article  CAS  PubMed  Google Scholar 

  • Zamostiano R, Pinhasov A, Gelber E, Steingart RA, Seroussi E, Giladi E, Bassan M, Wollman Y, Eyre HJ, Mulley JC, Brenneman DE, Gozes I (2001) Cloning and characterization of the human activity-dependent neuroprotective protein. J Biol Chem 276(1):708–714

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is in partial fulfillment of the PhD study requirements of Oxana Kapitansky. We thank Noy Amram, Adva Hadar, Irena Voinsky, Chen Slominsky-Lustgarten, Yael Toren, Koral Goltseker, and Liora Rotero-Rosenberg for technical and editorial valuable help.

Funding

Research was supported by funds from the Israel Science Foundation (ISF) grant (1424/14), ERA-NET neuron AUTISYN, AMN Foundation, Drs. Ronith and Armand Stemmer, and Mr. Arthur Gerbi (French Friends of Tel Aviv University), as well as Canadian (Mrs. Anne and Mr. Alex Cohen) and Spanish Friends of Tel Aviv University, Alicia Koplowitz Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Illana Gozes.

Ethics declarations

Conflict of interest

Professor Illana Gozes in the Chief Scientific Officer of Coronis Neurosciences, developing CP201 (under patent protection and license from Ramot at Tel Aviv University).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapitansky, O., Gozes, I. ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. GeroScience 41, 321–340 (2019). https://doi.org/10.1007/s11357-019-00079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-019-00079-x

Keywords

Navigation