Skip to main content

Advertisement

Log in

Chronic adjunction of 1-deoxynojirimycin protects from age-related behavioral and biochemical changes in the SAMP8 mice

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Several studies have indicated that a caloric restriction mimetic or treatment for type 2 diabetes may reverse brain aging. Therefore, we investigated the effect of 1-deoxynojirimycin (DNJ), an alkaloid acting as an inhibitor of α-glucosidase, on age-related behavioral and biochemical changes. SAMP8 mice were randomly assigned to a control group labeled “old” or to the 10- or 20-mg/kg/day DNJ groups. The mice in the DNJ groups were administered DNJ orally from 3 to 9 months of age, and then, a “young” control group was added to analyze the age effect. The old controls exhibited significant declines in sensorimotor ability, open-field anxiety, spatial and nonspatial memory abilities, and age-related biochemical changes, including decreased serum insulin level; increased levels of insulin-like growth factor 1 receptor, presynaptic protein synaptotagmin-1, and astrocyte activation; and decreased levels of insulin receptor, brain-derived neurotrophic factor, presynaptic protein syntaxin-1, and acetylation of histones H4 at lysine 8 in the dorsal hippocampus. Significant correlations exist between the age-related behavioral deficits and the serological and histochemical data. Chronic DNJ treatment alleviated these age-related changes, and the 20-mg/kg/day DNJ group showed more significant improvement. Thus, DNJ may have the potential to maintain successful brain aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbott MA, Wells DG, Fallon JR (1999) The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J Neurosci 19:7300–7308

    CAS  PubMed  Google Scholar 

  • Ahlskog JE, Geda YE, Graff-Radford NR, Petersen RC (2011) Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin Proc 86:876–884

    Article  PubMed Central  PubMed  Google Scholar 

  • Anton SD, Karabetian C, Heekin K, Leeuwenburgh C (2013) Caloric restriction to moderate senescence: mechanisms and clinical utility. Curr Transl Geriatr Exp Gerontol Rep 2:239–246

    Article  PubMed Central  PubMed  Google Scholar 

  • Avogaro A, de Kreutzenberg SV, Fadini GP (2010) Insulin signaling and life span. Pflugers Arch 459:301–314

    Article  CAS  PubMed  Google Scholar 

  • Balzarini J (2007) The alpha(1,2)-mannosidase I inhibitor 1-deoxymannojirimycin potentiates the antiviral activity of carbohydrate-binding agents against wild-type and mutant HIV-1 strains containing glycan deletions in gp120. FEBS Lett 581:2060–2064

    Article  CAS  PubMed  Google Scholar 

  • Barker GR, Bird F, Alexander V, Warburton EC (2007) Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci 27:2948–2957

    Article  CAS  PubMed  Google Scholar 

  • Barzilai N, Huffman DM, Muzumdar RH, Bartke A (2012) The critical role of metabolic pathways in aging. Diabetes 61:1315–1322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basu R, Breda E, Oberg AL, Powell CC, Dalla MC, Basu A, Vittone JL, Klee GG, Arora P, Jensen MD, Toffolo G, Cobelli C, Rizza RA (2003) Mechanisms of the age-associated deterioration in glucose tolerance: contribution of alterations in insulin secretion, action, and clearance. Diabetes 52:1738–1748

    Article  CAS  PubMed  Google Scholar 

  • Beeri MS, Haroutunian V, Schmeidler J, Sano M, Fam P, Kavanaugh A, Barr AM, Honer WG, Katsel P (2012) Synaptic protein deficits are associated with dementia irrespective of extreme old age. Neurobiol Aging 33(1125):e1121–1128

    Google Scholar 

  • Benedict C, Hallschmid M, Schultes B, Born J, Kern W (2007) Intranasal insulin to improve memory function in humans. Neuroendocrinology 86:136–142

    Article  CAS  PubMed  Google Scholar 

  • Bilbo SD, Smith SH, Schwarz JM (2012) A lifespan approach to neuroinflammatory and cognitive disorders: a critical role for glia. J Neuroimmune Pharmacol 7:24–41

    Article  PubMed Central  PubMed  Google Scholar 

  • Bosco D, Fava A, Plastino M, Montalcini T, Pujia A (2011) Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J Cell Mol Med 15:1807–1821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen GH, Wang C, Yangcheng HY, Liu RY, Zhou JN (2007a) Age-related changes in anxiety are task-specific in the senescence-accelerated prone mouse 8. Physiol Behav 91:644–651

    Article  CAS  PubMed  Google Scholar 

  • Chen GH, Wang H, Yang QG, Tao F, Wang C, Xu DX (2011) Acceleration of age-related learning and memory decline in middle-aged CD-1 mice due to maternal exposure to lipopolysaccharide during late pregnancy. Behav Brain Res 218:267–279

    Article  CAS  PubMed  Google Scholar 

  • Chen GH, Wang YJ, Qin S, Yang QG, Zhou JN, Liu RY (2007b) Age-related spatial cognitive impairment is correlated with increase of synaptotagmin 1 in dorsal hippocampus in SAMP8 mice. Neurobiol Aging 28:611–618

    Article  CAS  PubMed  Google Scholar 

  • Chen GH, Wang YJ, Zhang LQ, Zhou JN (2004) Age- and sex-related disturbance in a battery of sensorimotor and cognitive tasks in Kunming mice. Physiol Behav 83:531–541

    Article  CAS  PubMed  Google Scholar 

  • Chung YH, Shin CM, Joo KM, Kim MJ, Cha CI (2002) Region-specific alterations in insulin-like growth factor receptor type I in the cerebral cortex and hippocampus of aged rats. Brain Res 946:307–313

    Article  CAS  PubMed  Google Scholar 

  • Coelho FG, Gobbi S, Andreatto CA, Corazza DI, Pedroso RV, Santos-Galduroz RF (2013) Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Arch Gerontol Geriatr 56:10–15

    Article  CAS  PubMed  Google Scholar 

  • Currais A, Prior M, Lo D, Jolivalt C, Schubert D, Maher P (2012) Diabetes exacerbates amyloid and neurovascular pathology in aging-accelerated mice. Aging Cell 11:1017–1026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Felice FG, Ferreira ST (2014) Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63:2262–2272

    Article  PubMed  Google Scholar 

  • Dere E, Huston JP, De Souza Silva MA (2005) Episodic-like memory in mice: simultaneous assessment of object, place and temporal order memory. Brain Res Brain Res Protoc 16:10–19

    Article  PubMed  Google Scholar 

  • DeVito LM, Eichenbaum H (2010) Distinct contributions of the hippocampus and medial prefrontal cortex to the “what-where-when” components of episodic-like memory in mice. Behav Brain Res 215:318–325

    Article  PubMed Central  PubMed  Google Scholar 

  • Driscoll I, Hamilton DA, Petropoulos H, Yeo RA, Brooks WM, Baumgartner RN, Sutherland RJ (2003) The aging hippocampus: cognitive, biochemical and structural findings. Cereb Cortex 13:1344–1351

    Article  PubMed  Google Scholar 

  • Duan W, Lee J, Guo Z, Mattson MP (2001) Dietary restriction stimulates BDNF production in the brain and thereby protects neurons against excitotoxic injury. J Mol Neurosci 16:1–12

    Article  CAS  PubMed  Google Scholar 

  • Fan R, Kang Z, He L, Chan J, Xu G (2011) Exendin-4 improves blood glucose control in both young and aging normal non-diabetic mice, possible contribution of beta cell independent effects. PLoS One 6:e20443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foley AG, Cassidy AW, Regan CM (2014) Pentyl-4-yn-VPA, a histone deacetylase inhibitor, ameliorates deficits in social behavior and cognition in a rodent model of autism spectrum disorders. Eur J Pharmacol 727:80–86

    Article  CAS  PubMed  Google Scholar 

  • Forwood SE, Winters BD, Bussey TJ (2005) Hippocampal lesions that abolish spatial maze performance spare object recognition memory at delays of up to 48 hours. Hippocampus 15:347–355

    Article  CAS  PubMed  Google Scholar 

  • Gong X, Ma M, Fan X, Li M, Liu Q, Liu X, Xu G (2012) Down-regulation of IGF-1/IGF-1R in hippocampus of rats with vascular dementia. Neurosci Lett 513:20–24

    Article  CAS  PubMed  Google Scholar 

  • Graff J, Tsai LH (2013) The potential of HDAC inhibitors as cognitive enhancers. Annu Rev Pharmacol Toxicol 53:311–330

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C, O’Banion K, Klockgether T, Van Leuven F, Landreth GE (2005) Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain 128:1442–1453

    Article  PubMed  Google Scholar 

  • Heyward FD, Walton RG, Carle MS, Coleman MA, Garvey WT, Sweatt JD (2012) Adult mice maintained on a high-fat diet exhibit object location memory deficits and reduced hippocampal SIRT1 gene expression. Neurobiol Learn Mem 98:25–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Howe JD, Smith N, Lee MJ, Ardes-Guisot N, Vauzeilles B, Desire J, Baron A, Bleriot Y, Sollogoub M, Alonzi DS, Butters TD (2013) Novel imino sugar alpha-glucosidase inhibitors as antiviral compounds. Bioorg Med Chem 21:4831–4838

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S, Lee SK, Loffler T, Schliebs R (2000) Inhibition of the neuronal insulin receptor. An in vivo model for sporadic Alzheimer disease? Ann N Y Acad Sci 920:256–258

    Article  CAS  PubMed  Google Scholar 

  • Intlekofer KA, Berchtold NC, Malvaez M, Carlos AJ, McQuown SC, Cunningham MJ, Wood MA, Cotman CW (2013) Exercise and sodium butyrate transform a subthreshold learning event into long-term memory via a brain-derived neurotrophic factor-dependent mechanism. Neuropsychopharmacology 38:2027–2034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Intlekofer KA, Cotman CW (2013) Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol Dis 57:47–55

    Article  CAS  PubMed  Google Scholar 

  • Irie F, Fitzpatrick AL, Lopez OL, Kuller LH, Peila R, Newman AB, Launer LJ (2008) Enhanced risk for Alzheimer disease in persons with type 2 diabetes and APOE epsilon4: the Cardiovascular Health Study Cognition Study. Arch Neurol 65:89–93

    Article  PubMed  Google Scholar 

  • Irwin N, Green BD, Gault VA, Harriot P, O’Harte FP, Flatt PR (2006) Stable agonist of glucose-dependent insulinotropic polypeptide (GIP) restores pancreatic beta cell glucose responsiveness but not glucose intolerance in aging mice. Exp Gerontol 41:151–156

    Article  CAS  PubMed  Google Scholar 

  • Islam B, Khan SN, Haque I, Alam M, Mushfiq M, Khan AU (2008) Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1-deoxynojirimycin isolated from Morus alba. J Antimicrob Chemother 62:751–757

    Article  CAS  PubMed  Google Scholar 

  • Itzhak Y, Liddie S, Anderson KL (2013) Sodium butyrate-induced histone acetylation strengthens the expression of cocaine-associated contextual memory. Neurobiol Learn Mem 102:34–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jagust W, Gitcho A, Sun F, Kuczynski B, Mungas D, Haan M (2006) Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Ann Neurol 59:673–681

    Article  PubMed  Google Scholar 

  • Jang JS, Cho Y, Jeong GT, Kim SK (2012) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng 35:11–18

    Article  CAS  PubMed  Google Scholar 

  • Jiang CH, Tsien JZ, Schultz PG, Hu Y (2001) The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc Natl Acad Sci U S A 98:1930–1934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kappeler L, De Magalhaes Filho C, Dupont J, Leneuve P, Cervera P, Perin L, Loudes C, Blaise A, Klein R, Epelbaum J, Le Bouc Y, Holzenberger M (2008) Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 6:e254

    Article  PubMed Central  PubMed  Google Scholar 

  • Kimura T, Nakagawa K, Kubota H, Kojima Y, Goto Y, Yamagishi K, Oita S, Oikawa S, Miyazawa T (2007) Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J Agric Food Chem 55:5869–5874

    Article  CAS  PubMed  Google Scholar 

  • Kojima Y, Kimura T, Nakagawa K, Asai A, Hasumi K, Oikawa S, Miyazawa T (2010) Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. J Clin Biochem Nutr 47:155–161

    Article  PubMed Central  PubMed  Google Scholar 

  • Komatsu T, Chiba T, Yamaza H, Yamashita K, Shimada A, Hoshiyama Y, Henmi T, Ohtani H, Higami Y, de Cabo R, Ingram DK, Shimokawa I (2008) Manipulation of caloric content but not diet composition, attenuates the deficit in learning and memory of senescence-accelerated mouse strain P8. Exp Gerontol 43:339–346

    Article  CAS  PubMed  Google Scholar 

  • Kong WH, Oh SH, Ahn YR, Kim KW, Kim JH, Seo SW (2008) Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models. J Agric Food Chem 56:2613–2619

    Article  CAS  PubMed  Google Scholar 

  • Korol DL, Gold PE (1998) Glucose, memory, and aging. Am J Clin Nutr 67:764S–771S

    CAS  PubMed  Google Scholar 

  • Lachner M, O’Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124

    Article  CAS  PubMed  Google Scholar 

  • Laron Z (2009) Insulin and the brain. Arch Physiol Biochem 115:112–116

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Do HJ, Shin MJ, Seong SI, Hwang KY, Lee JY, Kwon O, Jin T, Chung JH (2013) 1-Deoxynojirimycin isolated from a Bacillus subtilis stimulates adiponectin and GLUT4 expressions in 3T3-L1 adipocytes. J Microbiol Biotechnol 23:637–643

    Article  CAS  PubMed  Google Scholar 

  • Li YG, Ji DF, Zhong S, Lv ZQ, Lin TB, Chen S, Hu GY (2011) Hybrid of 1-deoxynojirimycin and polysaccharide from mulberry leaves treat diabetes mellitus by activating PDX-1/insulin-1 signaling pathway and regulating the expression of glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in alloxan-induced diabetic mice. J Ethnopharmacol 134:961–970

    Article  CAS  PubMed  Google Scholar 

  • Lommatzsch M, Zingler D, Schuhbaeck K, Schloetcke K, Zingler C, Schuff-Werner P, Virchow JC (2005) The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol Aging 26:115–123

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Markowska AL, Mooney M, Sonntag WE (1998a) Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience 87:559–569

    Article  CAS  PubMed  Google Scholar 

  • Markowska AL, Spangler EL, Ingram DK (1998b) Behavioral assessment of the senescence-accelerated mouse (SAM P8 and R1). Physiol Behav 64:15–26

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Maudsley S, Martin B (2004) A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1, BDNF and serotonin. Ageing Res Rev 3:445–464

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto M, Kiyota Y, Nishiyama M, Nagaoka A (1992) Senescence-accelerated mouse (SAM): age-related reduced anxiety-like behavior in the SAM-P/8 strain. Physiol Behav 51:979–985

    Article  CAS  PubMed  Google Scholar 

  • Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31:224–243

    Article  CAS  PubMed  Google Scholar 

  • Muller AP, Fernandez AM, Haas C, Zimmer E, Portela LV, Torres-Aleman I (2012) Reduced brain insulin-like growth factor I function during aging. Mol Cell Neurosci 49:9–12

    Article  CAS  PubMed  Google Scholar 

  • Murai T, Okuda S, Tanaka T, Ohta H (2007) Characteristics of object location memory in mice: behavioral and pharmacological studies. Physiol Behav 90:116–124

    Article  CAS  PubMed  Google Scholar 

  • Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10:209–219

    Article  CAS  PubMed  Google Scholar 

  • Nagashima K, Zabriskie JB, Lyons MJ (1992) Virus-induced obesity in mice: association with a hypothalamic lesion. J Neuropathol Exp Neurol 51:101–109

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa K, Kubota H, Tsuzuki T, Kariya J, Kimura T, Oikawa S, Miyazawa T (2008) Validation of an ion trap tandem mass spectrometric analysis of mulberry 1-deoxynojirimycin in human plasma: application to pharmacokinetic studies. Biosci Biotechnol Biochem 72:2210–2213

    Article  CAS  PubMed  Google Scholar 

  • Nicolle MM, Gallagher M, McKinney M (1999) No loss of synaptic proteins in the hippocampus of aged, behaviorally impaired rats. Neurobiol Aging 20:343–348

    Article  CAS  PubMed  Google Scholar 

  • Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140

    Article  CAS  PubMed  Google Scholar 

  • Oya J, Nakagami T, Yamamoto Y, Fukushima S, Takeda M, Endo Y, Uchigata Y (2014) Effects of age on insulin resistance and secretion in subjects without diabetes. Intern Med 53:941–947

    Article  PubMed  Google Scholar 

  • Paddock BE, Wang Z, Biela LM, Chen K, Getzy MD, Striegel A, Richmond JE, Chapman ER, Featherstone DE, Reist NE (2011) Membrane penetration by synaptotagmin is required for coupling calcium binding to vesicle fusion in vivo. J Neurosci 31:2248–2257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756

    Article  CAS  PubMed  Google Scholar 

  • Quick MW (2006) The role of SNARE proteins in trafficking and function of neurotransmitter transporters. Handb Exp Pharmacol, 181-196

  • Ribeiro RA, Batista TM, Coelho FM, Boschero AC, Lopes GS, Carneiro EM (2012) Decreased beta-cell insulin secretory function in aged rats due to impaired Ca(2+) handling. Exp Physiol 97:1065–1073

    Article  CAS  PubMed  Google Scholar 

  • Rothman SM, Griffioen KJ, Wan R, Mattson MP (2012) Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health. Ann N Y Acad Sci 1264:49–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schaaf MJ, Workel JO, Lesscher HM, Vreugdenhil E, Oitzl MS, de Kloet ER (2001) Correlation between hippocampal BDNF mRNA expression and memory performance in senescent rats. Brain Res 915:227–233

    Article  CAS  PubMed  Google Scholar 

  • Shimohama S, Fujimoto S, Sumida Y, Akagawa K, Shirao T, Matsuoka Y, Taniguchi T (1998) Differential expression of rat brain synaptic proteins in development and aging. Biochem Biophys Res Commun 251:394–398

    Article  CAS  PubMed  Google Scholar 

  • Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, Czernin J, Rapoport SI, Pietrini P, Alexander GE, Schapiro MB, Jagust WJ, Hoffman JM, Welsh-Bohmer KA, Alavi A, Clark CM, Salmon E, de Leon MJ, Mielke R, Cummings JL, Kowell AP, Gambhir SS, Hoh CK, Phelps ME (2001) Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 286:2120–2127

    Article  CAS  PubMed  Google Scholar 

  • Simen AA, Bordner KA, Martin MP, Moy LA, Barry LC (2011) Cognitive dysfunction with aging and the role of inflammation. Ther Adv Chronic Dis 2:175–195

    Article  PubMed Central  PubMed  Google Scholar 

  • Snigdha S, de Rivera C, Milgram NW, Cotman CW (2014) Exercise enhances memory consolidation in the aging brain. Front Aging Neurosci 6:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? J Alzheimers Dis 7:63–80

    CAS  PubMed  Google Scholar 

  • Szoke E, Shrayyef MZ, Messing S, Woerle HJ, van Haeften TW, Meyer C, Mitrakou A, Pimenta W, Gerich JE (2008) Effect of aging on glucose homeostasis: accelerated deterioration of beta-cell function in individuals with impaired glucose tolerance. Diabetes Care 31:539–543

    Article  CAS  PubMed  Google Scholar 

  • Takeda T (2009) Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res 34:639–659

    Article  CAS  PubMed  Google Scholar 

  • Tong JJ, Chen GH, Wang F, Li XW, Cao L, Sui X, Tao F, Yan WW, Wei ZJ (2015) Chronic acarbose treatment alleviates age-related behavioral and biochemical changes in SAMP8 mice. Behav Brain Res 284:138–152

    Article  CAS  PubMed  Google Scholar 

  • Torres Aleman I (2012) Insulin-like growth factor-1 and central neurodegenerative diseases. Endocrinol Metab Clin N Am 41(395–408):vii

    Google Scholar 

  • Tsuduki T, Kikuchi I, Kimura T, Nakagawa K, Miyazawa T (2013) Intake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. Food Chem 139:16–23

    Article  CAS  PubMed  Google Scholar 

  • Tsuruoka T, Fukuyasu H, Ishii M, Usui T, Shibahara S, Inouye S (1996) Inhibition of mouse tumor metastasis with nojirimycin-related compounds. J Antibiot (Tokyo) 49:155–161

    Article  CAS  Google Scholar 

  • Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, Rutten GE, Van Weel C (2005) Alpha-glucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev CD003639

  • VanGuilder HD, Farley JA, Yan H, Van Kirk CA, Mitschelen M, Sonntag WE, Freeman WM (2011) Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiol Dis 43:201–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • VanGuilder HD, Yan H, Farley JA, Sonntag WE, Freeman WM (2010) Aging alters the expression of neurotransmission-regulating proteins in the hippocampal synaptoproteome. J Neurochem 113:1577–1588

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang RJ, Yang CH, Hu ML (2010a) 1-Deoxynojirimycin inhibits metastasis of B16F10 melanoma cells by attenuating the activity and expression of matrix metalloproteinases-2 and -9 and altering cell surface glycosylation. J Agric Food Chem 58:8988–8993

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zheng W, Xie JW, Wang T, Wang SL, Teng WP, Wang ZY (2010b) Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model. Mol Neurodegener 5:46

    Article  PubMed Central  PubMed  Google Scholar 

  • Watson GS, Craft S (2003) The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs 17:27–45

    Article  CAS  PubMed  Google Scholar 

  • Wirths O, Bayer TA (2010) Neuron loss in transgenic mouse models of Alzheimer’s disease. Int J Alzheimers Dis 2010

  • Xavier LL, Viola GG, Ferraz AC, Da Cunha C, Deonizio JM, Netto CA, Achaval M (2005) A simple and fast densitometric method for the analysis of tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area. Brain Res Brain Res Protoc 16:58–64

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Kadar T, Sirimanne E, MacGibbon A, Guan J (2012) Age-related memory decline is associated with vascular and microglial degeneration in aged rats. Behav Brain Res 235:210–217

    Article  PubMed  Google Scholar 

  • Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274:34893–34902

    Article  CAS  PubMed  Google Scholar 

  • Zhao WQ, Chen H, Quon MJ, Alkon DL (2004) Insulin and the insulin receptor in experimental models of learning and memory. Eur J Pharmacol 490:71–81

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Foundation of Nature Science of China (81370444), the Natural Science Foundation for the Youth of China (81301094), the Special Fund for Agro-scientific Research in the Public Interest of China (No. 201403064), and the key project of the Natural Science from the Education Department of Anhui Province (ZD2008007-1 and 2).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gui-Hai Chen or Zhao-Jun Wei.

Additional information

Gui-Hai Chen and Jing-Jing Tong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 24 kb)

ESM 2

(DOCX 55 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, GH., Tong, JJ., Wang, F. et al. Chronic adjunction of 1-deoxynojirimycin protects from age-related behavioral and biochemical changes in the SAMP8 mice. AGE 37, 102 (2015). https://doi.org/10.1007/s11357-015-9839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-015-9839-0

Keywords

Navigation