Skip to main content
Log in

Sustainable synthesis of spongy-like porous carbon for supercapacitive energy storage systems towards pollution control

  • Recent Advances in Decarbonization Technologies for Sustainable Developments
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, the fruit of Terminalia chebula, commonly known as chebulic myrobalan, is used as the precursor for carbon for its application in supercapacitors. The Terminalia chebula biomass-derived sponge-like porous carbon (TC-SPC) is synthesized using a facile and economical method of pyrolysis. TC-SPC thus obtained is subjected to XRD, FESEM, TEM, HRTEM, XPS, Raman spectroscopy, ATR-FTIR, and nitrogen adsorption–desorption analyses for their structural and chemical composition. The examination revealed that TC-SPC has a crystalline nature and a mesoporous and microporous structure accompanied by a disordered carbon framework that is doped with heteroatoms such as nitrogen and sulfur. Electrochemical studies are performed on TC-SPC using cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. TC-SPC contributed a maximum specific capacitance of 145 F g−1 obtained at 1 A g−1. The cyclic stability of TC-SPC is significant with 10,000 cycles, maintaining the capacitance retention value of 96%. The results demonstrated that by turning the fruit of Terminalia chebula into an opulent product, a supercapacitor, TC-SPC generated from biomass has proven to be a potential candidate for energy storage application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdah MAAM, Mokhtar M, Khoon LT, Sopian K, Dzulkurnain NA, Ahmad A, Sulaiman Y, Bella F, Suait MS (2021) Synthesis and electrochemical characterizations of poly(3,4-ethylenedioxythiophene/manganese oxide coated on porous carbon nanofibers as a potential anode for lithium-ion batteries. Energy Rep 7:8677–8687

    Article  Google Scholar 

  • Amici J, Torchio C, Versaci D, Dessantis D, Marchisio A, Caldera F, Bella F, Francia C, Bodoardo S (2021) Nanosponge-based composite gel polymer electrolyte for safer Li-O2 batteries. Polymers 13:1625

    Article  CAS  Google Scholar 

  • Atchudan R, Edison TNJI, Perumal S, Lee YR (2017) Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications. Appl Surf Sci 393:276–286

    Article  CAS  Google Scholar 

  • Atchudan R, Edison TNJI, Perumal S, Vinodh R, Lee YR (2019) Betel-derived nitrogen-doped multicolor carbon dots for environmental and biological applications. J Mol Liq 296:111817

    Article  CAS  Google Scholar 

  • Atchudan R, Edison TNJI, Perumal S, Vinodh R, Babu RS, Sundramoorthy AK, Renita AA, Lee YR (2022) Facile synthesis of nitrogen-doped porous carbon materials using waste biomass for energy storage applications. Chemosphere 289:133225

    Article  CAS  Google Scholar 

  • Athanasiou M, Yannopoulos SN, Ioannides T (2022) Biomass-derived graphene-like materials as active electrodes for supercapacitor applications: a critical review. Chem Eng J 446:137191

  • Bag A, Bhattacharyya SK, Chattopadhyay RR (2013) The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac J Trop Biomed 3:244–252

    Article  Google Scholar 

  • Bai Y-L, Zhang C-C, Feng R, Guo Z-X, Wang K-X (2024) Biomass‐derived carbon materials for electrochemical energy storage. Chemi—a Eur J 30:e202304157

  • Barthakur N, Arnold N (1991) Nutritive value of the chebulic myrobalan (Terminalia chebula Retz.) and its potential as a food source. Food Chem 40:213–219

    Article  CAS  Google Scholar 

  • Chaudhary P, Bansal S, Sharma BB, Saini S, Joshi A (2024) Waste biomass-derived activated carbons for various energy storage device applications: a review. J Energy Storage 78:109996

    Article  Google Scholar 

  • Chockalingam S, Bisht A, Panwar O, Kesarwani A, Singh B, Chand J, Singh V (2015) Synthesis, structural and field emission properties of multiwall carbon nanotube-graphene-like nanocarbon hybrid films grown by microwave plasma enhanced chemical vapor deposition. Mater Chem Phys 156:38–46

    Article  CAS  Google Scholar 

  • Chung S-H, Chang C-H, Manthiram A (2016) A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium–sulfur batteries. ACS Nano 10:10462–10470

    Article  CAS  Google Scholar 

  • De la Puente G, Pis J, Menéndez J, Grange P (1997) Thermal stability of oxygenated functions in activated carbons. J Anal Appl Pyrol 43:125–138

    Article  Google Scholar 

  • Du W, Zhang Z, Du L, Fan X, Shen Z, Ren X, Zhao Y, Wei C, Wei S (2019) Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors. J Alloy Compd 797:1031–1040

    Article  CAS  Google Scholar 

  • Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116

    Article  CAS  Google Scholar 

  • Edison TNJI, Atchudan R, Sethuraman MG, Lee YR (2016) Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles. J Photochem Photobiol, B 162:604–610

    Article  CAS  Google Scholar 

  • Ganesan A, Mukherjee R, Raj J, Shaijumon MM (2014) Nanoporous rice husk derived carbon for gas storage and high performance electrochemical energy storage. J Porous Mater 21:839–847

    Article  CAS  Google Scholar 

  • Gao X, Liu K, Su C, Zhang W, Dai Y, Parkin IP, Carmalt CJ, He G (2024a) From bibliometric analysis: 3D printing design strategies and battery applications with a focus on zinc-ion batteries. SmartMat 5:e1197

    Article  CAS  Google Scholar 

  • Gao Y-M, Liu Y, Feng K-J, Ma J-Q, Miao Y-J, Xu B-R, Pan K-M, Akiyoshi O, Wang G-X, Zhang K-K (2024b) Emerging WS2/WSe2@ graphene nanocomposites: synthesis and electrochemical energy storage applications. Rare Met 43:1–19

    Article  CAS  Google Scholar 

  • Ghosh S, Yadav S, Devi A, Thomas T (2022) Techno-economic understanding of Indian energy-storage market: a perspective on green materials-based supercapacitor technologies. Renew Sustain Energy Rev 161:112412

    Article  CAS  Google Scholar 

  • Gill SS, Goyal T, Goswami M, Patel P, Das Gupta G, Verma SK (2023) Remediation of environmental toxicants using carbonaceous materials: opportunity and challenges. Environ Sci Pollut Res 30:69727–69750

    Article  CAS  Google Scholar 

  • Hao NTM, Ahmed S, An J-C, Sun H-J, Park G, Shim J (2021) Co-Co3O4 embedded in carbon nanotube derived from a zeolitic-imidazolate framework as anode material for lithium-ion batteries. Bull Korean Chem Soc 42:1220–1224

    Article  CAS  Google Scholar 

  • Hong H, Tu H, Jiang L, Du Y, Wong C-p (2024) Advances in fabric-based supercapacitors and batteries: harnessing textiles for next-generation energy storage. J Energy Storage 75:109561

    Article  Google Scholar 

  • Huang C, Yin J, Shi W, Cheng Y, Xu X (2024) Recent advances of tailoring defects and pores in hard carbon for sodium storage. Mater Today Energy 40:101501

  • Huo P, Ni S, Hou P, Xun Z, Liu Y, Gu J (2019) A crosslinked soybean protein isolate gel polymer electrolyte based on neutral aqueous electrolyte for a high-energy-density supercapacitor. Polymers 11:863

    Article  CAS  Google Scholar 

  • Jiang X, Chen Y, Meng X, Cao W, Liu C, Huang Q, Naik N, Murugadoss V, Huang M, Guo Z (2022) The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 191:448–470

    Article  CAS  Google Scholar 

  • Kandhasamy N, Preethi LK, Mani D, Walczak L, Mathews T, Venkatachalam R (2023) RGO nanosheet wrapped β-phase NiCu2S nanorods for advanced supercapacitor applications. Environ Sci Pollut Res 30:18546–18562

    Article  CAS  Google Scholar 

  • Kang HE, Ko J, Song SG, Yoon YS (2024) Recent progress in utilizing carbon nanotubes and graphene to relieve volume expansion and increase electrical conductivity of Si-based composite anodes for lithium-ion batteries. Carbon 219:118800

  • Karimi-Maleh H, Kariper İA, Karaman C, Korkmaz S, Karaman O (2022) Direct utilization of radioactive irradiated graphite as a high-energy supercapacitor a promising electrode material. Fuel 325:124843

    Article  CAS  Google Scholar 

  • Kishore SC, Atchudan R, Perumal S, Edison TNJI, Sundramoorthy AK, Vinodh R, Alagan M, Lee YR (2022) Facile synthesis of molybdenum disulfide adorned heteroatom-doped porous carbon for energy storage applications. J Nanostruct Chem 13:545–561

    Article  Google Scholar 

  • Komal Zafar H, Zainab S, Masood M, Sohail M, Shoaib Ahmad Shah S, Karim MR, O’Mullane A, Ostrikov K, Will G, Wahab MA (2024) Recent advances on nitrogen-doped porous carbons towards electrochemical supercapacitor applications. Chem Rec 24:e202300161

    Article  CAS  Google Scholar 

  • Krishnaiah P, Atchudan R, Perumal S, Salama E-S, Lee YR, Jeon B-H (2022) Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+. Chemosphere 286:131764

    Article  CAS  Google Scholar 

  • Kumar R, Joanni E, Sahoo S, Shim J-J, Kian TW, Matsuda A, Singh RK (2022) An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: from zero to bi-dimensional materials. Carbon 193:298–338

    Article  CAS  Google Scholar 

  • Lee K-C, Lim MSW, Hong Z-Y, Chong S, Tiong TJ, Pan G-T, Huang C-M (2021a) Coconut shell-derived activated carbon for high-performance solid-state supercapacitors. Energies 14:4546

    Article  CAS  Google Scholar 

  • Lee U-W, Yang G, Park S-J (2021b) Improvement of mesoporosity on supercapacitive performance of activated carbons derived from coffee grounds. Bull Korean Chem Soc 42:748–755

    Article  CAS  Google Scholar 

  • Lee W-J, Bera S, Woo H, Kim HG, Baek J-H, Hong W, Park J-Y, Oh S-J, Kwon S-H (2022) In situ engineering of a metal oxide protective layer into Pt/carbon fuel-cell catalysts by atomic layer deposition. Chem Mater 34:5949–5959

    Article  CAS  Google Scholar 

  • Li C, Yan C, Yang Q, Huo P (2024) Construction of MOFs derived porous carbon based core–shell hetero-structure electrode for superior asymmetric supercapacitor. Electrochim Acta 478:143835

    Article  CAS  Google Scholar 

  • Lijesh K, Khonsari M (2024) A thermodynamic approach for characterizing the degradation of Li-ion batteries. J Energy Storage 82:110565

    Article  Google Scholar 

  • Liu Y, Li X, Sun Y, Yang R, Lee Y, Ahn J-H (2021) Macro-microporous carbon with a three-dimensional channel skeleton derived from waste sunflower seed shells for sustainable room-temperature sodium sulfur batteries. J Alloy Compd 853:157316

    Article  CAS  Google Scholar 

  • Liu H, Xu T, Liang Q, Zhao Q, Zhao D, Si C (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv Compos Hybrid Mater 5:1168–1179

    Article  CAS  Google Scholar 

  • Liu T, Yang Y, Cao S, Xiang R, Zhang L, Yu J (2023) Pore perforation of graphene coupled with in situ growth of Co3Se4 for high-performance Na-ion battery. Adv Mater 35:2207752

    Article  CAS  Google Scholar 

  • Liu W, Li H, Tay RY (2024) Recent progress of high-performance in-plane zinc ion hybrid micro-supercapacitors: design, achievements, and challenges. Nanoscale 16:4542–4562

    Article  CAS  Google Scholar 

  • Lu X, Zhang L, Yu H, Lu Z, He J, Zheng J, Wu F, Chen L (2021) Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes. Chem Eng J 422:130101

    Article  CAS  Google Scholar 

  • Lv D (2022) Layered double hydroxides functionalized by carbonaceous materials: from preparation to energy and environmental applications. Environ Sci Pollut Res 29:30865–30891

    Article  CAS  Google Scholar 

  • Nath SS, Patil IG, Sundriyal P (2024) Material extrusion of electrochemical energy storage devices for flexible and wearable electronic applications. J Energy Storage 79:110129

    Article  Google Scholar 

  • Pandey D, Sambath Kumar K, Henderson LN, Suarez G, Vega P, Salvador HR, Roberson L, Thomas J (2022) Energized composites for electric vehicles: a dual function energy-storing supercapacitor-based carbon fiber composite for the body panels. Small 18:2107053

    Article  CAS  Google Scholar 

  • Perumal S, Atchudan R, Edison TNJI, Lee YR (2021) Sustainable synthesis of multifunctional carbon dots using biomass and their applications: a mini-review. J Environ Chem Eng 9:105802

    Article  CAS  Google Scholar 

  • Phor L, Kumar A, Chahal S (2024) Electrode materials for supercapacitors: a comprehensive review of advancements and performance. J Energy Storage 84:110698

    Article  Google Scholar 

  • Qin D, Liu Z, Zhao Y, Xu G, Zhang F, Zhang X (2018) A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode. Carbon 130:664–671

    Article  CAS  Google Scholar 

  • Que M, Zhang B, Chen J, Yin X, Yun S (2021) Carbon-based electrodes for perovskite solar cells. Mater Adv 2:5560–5579

    Article  CAS  Google Scholar 

  • Ramesh T, Rajalakshmi N, Dhathathreyan K, Reddy LRG (2018) Hierarchical porous carbon microfibers derived from tamarind seed coat for high-energy supercapacitor application. ACS Omega 3:12832–12840

    Article  CAS  Google Scholar 

  • Rashidi NA, Chai YH, Ismail IS, Othman MFH, Yusup S (2022) Biomass as activated carbon precursor and potential in supercapacitor applications. Biomass Convers Biorefin. https://doi.org/10.1007/s11356-024-33437-0

  • Ratre P, Nazeer N, Soni N, Kaur P, Tiwari R, Mishra PK (2024) Smart carbon-based sensors for the detection of non-coding RNAs associated with exposure to micro (nano) plastics: an artificial intelligence perspective. Environ Sci Pollut Res 31:8429–8452

    Article  CAS  Google Scholar 

  • Rawat S, Mishra RK, Bhaskar T (2022) Biomass derived functional carbon materials for supercapacitor applications. Chemosphere 286:131961

    Article  CAS  Google Scholar 

  • Reenu S, Phor L, Kumar A, Chahal S (2024) Electrode materials for supercapacitors: a comprehensive review of advancements and performance. J Energy Storage 84:110698

    Article  Google Scholar 

  • Reina M, Scalia A, Auxilia G, Fontana M, Bella F, Ferrero S, Lamberti A (2022) Boosting electric double layer capacitance in laser-induced graphene-based supercapacitors. Adv Sustain Syst 6:2100228

    Article  CAS  Google Scholar 

  • Sam DK, Li H, Xu Y-T, Cao Y (2024) Porous carbon fabrication techniques: a review. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2024.01.044

  • Sarr CT, Camara MB, Dakyo B (2022) Supercapacitors aging assessment in wind/tidal intermittent energies application with variable temperature. J Energy Storage 46:103790

    Article  Google Scholar 

  • Schmitz F, Lago N, Fagiolari L, Burkhart J, Cester A, Polo A, Prato M, Meneghesso G, Gross S, Bella F (2022) High open-circuit voltage Cs2AgBiBr 6 carbon-based perovskite solar cells via green processing of ultrasonic spray-coated carbon electrodes from waste tire sources. Chemsuschem 15:e202201590

    Article  CAS  Google Scholar 

  • Shaheen Shah S, Abu Nayem S, Sultana N, Saleh Ahammad A, Abdul Aziz M (2022) Preparation of sulfur-doped carbon for supercapacitor applications: a review. Chemsuschem 15:e202101282

    Article  CAS  Google Scholar 

  • Shaker M, Ng S, Ghazvini AAS, Javanmardi S, Gaho MA, Jin Z, Ge Q (2024) Carbon/graphene quantum dots as electrolyte additives for batteries and supercapacitors: a review. J Energy Storage 85:111040

    Article  Google Scholar 

  • Shokry A, Karim M, Khalil M, Ebrahim S, El Nady J (2022) Supercapacitor based on polymeric binary composite of polythiophene and single-walled carbon nanotubes. Sci Rep 12:1–13

    Article  Google Scholar 

  • Subramani K, Sudhan N, Karnan M, Sathish M (2017) Orange peel derived activated carbon for fabrication of high-energy and high-rate supercapacitors. ChemistrySelect 2:11384–11392

    Article  CAS  Google Scholar 

  • Sumangala T, Sreekanth M, Rahaman A (2021) Applications of supercapacitors, Handbook of nanocomposite supercapacitor materials III, 1st edn. Springer, pp 367–393

  • Tafete GA, Abera MK, Thothadri G (2022) Review on nanocellulose-based materials for supercapacitors applications. J Energy Storage 48:103938

    Article  Google Scholar 

  • Tantubay K, Bairy B, Dutta A, Akhtar AJ, Pal S, Dam S, Baskey M (2023) Insight into the 4-nitrophenol reduction, supercapacitive behavior, and antimicrobial activity of ZnCo2O4-rGO nanocomposite fabricated by the simple reflux method. Environ Sci Pollut Res 30:110764–110778

    Article  CAS  Google Scholar 

  • Theerthagiri J, Thiagarajan K, Senthilkumar B, Khan Z, Senthil RA, Arunachalam P, Madhavan J, Ashokkumar M (2017) Synthesis of hierarchical cobalt phosphate nanoflakes and their enhanced electrochemical performances for supercapacitor applications. ChemistrySelect 2:201–210

    Article  CAS  Google Scholar 

  • Wahid M, Puthusseri D, Phase D, Ogale S (2014) Enhanced capacitance retention in a supercapacitor made of carbon from sugarcane bagasse by hydrothermal pretreatment. Energy Fuels 28:4233–4240

    Article  CAS  Google Scholar 

  • Wan H, Xu J, Wang C (2024) Designing electrolytes and interphases for high-energy lithium batteries. Nat Rev Chem 8:30–44

    Article  CAS  Google Scholar 

  • Wu Z, Li H, Li H, Yang B, Wei R, Zhu X, Zhu X, Sun Y (2022) Direct growth of porous vanadium nitride on carbon cloth with commercial-level mass loading for solid-state supercapacitors. Chem Eng J 444:136597

    Article  CAS  Google Scholar 

  • Yang Y, Yang S, Xue X, Zhang X, Li Q, Yao Y, Rui X, Pan H, Yu Y (2024) Inorganic all-solid-state sodium batteries: electrolyte designing and interface engineering. Adv Mater 36:2308332

    Article  CAS  Google Scholar 

  • Yu L-H, Tao X, Feng S-R, Liu J-T, Zhang L-L, Zhao G-Z, Zhu G (2024) Recent development of three-dimension printed graphene oxide and MXene-based energy storage devices. Tungsten 6:196–211

    Article  Google Scholar 

  • Zhang Q, Han K, Li S, Li M, Li J, Ren K (2018) Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 10:2427–2437

    Article  CAS  Google Scholar 

  • Zhang G, Zhang J, Yang H, Li X (2022) In-situ redox reaction derived porous nanosheets of MnO2 for supercapacitors. Mater Lett 306:130858

    Article  CAS  Google Scholar 

  • Zhang Q, Gao XW, Liu X, Mu JJ, Gu Q, Liu Z, Luo WB (2024a) Flexible wearable energy storage devices: materials, structures, and applications. Battery Energy 3:20230061

    Article  Google Scholar 

  • Zhang S, Zhang Q, Ma R, Feng X, Chen F, Wang D, Zhang B, Wang Y, Guo N, Xu M, Wang L, Jia D (2024b) Boosting the capacitive performance by constructing O, N co-doped hierarchical porous structure in carbon for supercapacitor. J Energy Storage 82:110569

    Article  Google Scholar 

  • Zhou Q, Yang W, Wang L, Lu H, Nie S, Xu L, Yang W, Wei C (2024) Biomass carbon materials for high-performance secondary battery electrodes: a review. Resources Chem Mater 3:123–145

    Google Scholar 

Download references

Funding

This work was supported by the Industrial-Linked Low Carbon Process Conversion Core Technology Development Program funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) (Grant Number RS-2022–00155175). The project was also supported by the Researchers Supporting Project number (RSP2024R142), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Somasundaram Chandra Kishore: conceptualization, methodology, formal analysis, and writing—original draft. Suguna Perumal: visualization and writing—review and editing. Raji Atchudan: conceptualization, investigation, methodology, formal analysis, and writing-—original draft. Thomas Nesakumar Jebakumar Immanuel Edison: investigation, software, and formal analysis. Ashok Kumar Sundramoorthy: investigation and visualization. Devaraj Manoj: investigation and formal analysis. Muthulakshmi Alagan: Software and validation. Raju Suresh Kumar: formal analysis and visualization. Abdulrahman Ibrahim Almansour: validation and funding acquisition. Sangaraju Sambasivam: validation and visualization. Yong Rok Lee: project administration and supervision.

Corresponding author

Correspondence to Raji Atchudan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors have significantly contributed to this work.

Consent for publication

All authors approved this for publication.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 107 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishore, S.C., Perumal, S., Atchudan, R. et al. Sustainable synthesis of spongy-like porous carbon for supercapacitive energy storage systems towards pollution control. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-33437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-024-33437-0

Keywords

Navigation