Skip to main content
Log in

Effect of silica fume substitution by limestone powder and cement kiln dust on the shrinkage, durability, and sustainability of UHPC

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Silica fume is usually used in UHPC, three times more than that for normal concrete, to enhance mechanical properties and durability. However, silica fume (SF) is an expensive material and has high production costs. This work is aimed at investigating the shrinkage and durability performance of previously developed UHPC mixtures utilizing the two calcareous waste materials, namely limestone powder (LSP) and cement kiln dust (CKD), by partially replacing the silica fume. The optimally selected mixtures of UHPC, having flow and strength above the minimum required, were used for detailed investigation in terms of shrinkage and durability characteristics. The results showed that by replacing SF with up to 20% of LSP and up to 20% of CKD, the mechanical properties of UHPC remained satisfactory compared to the control mixture with 100% SF. However, the ultimate shrinkage was higher for mixtures incorporating LSP or CKD, indicating the need for more volume of steel fibers to compensate for the shrinkage strains. The developed UHPCs also exhibited high resistance against reinforcement corrosion and sulfate attack, making them suitable for use in aggressive exposure conditions. However, special attention needs to be paid to the CKD content, where it is recommended to limit the content of CKD to about 15% or less to control the durability performance of the UHPCs. In addition, the sustainability analysis of developed UHPC mixtures was carried out using the life-cycle assessment and eco-strength intensity index. The results indicated that the UHPC mixtures possess a higher life-cycle and are therefore more sustainable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

Download references

Acknowledgements

The technical support received from King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia, is well acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

SA: conceptualization, data curation, formal analysis, methodology, writing original draft; AF: material preparation, investigation, formal analysis, validation, reviewing and editing; AAB: material preparation, investigation, data collection and analysis, writing original draft, reviewing and editing; MM: resources, validation, reviewing and editing; MAO: resources, validation, reviewing and editing.

Corresponding author

Correspondence to Ashraf A. Bahraq.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: José Dinis Silvestre

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Al-Fakih, A., Bahraq, A.A. et al. Effect of silica fume substitution by limestone powder and cement kiln dust on the shrinkage, durability, and sustainability of UHPC. Environ Sci Pollut Res 31, 26824–26838 (2024). https://doi.org/10.1007/s11356-024-32782-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32782-4

Keywords

Navigation