Skip to main content
Log in

Durability and Mechanical Aspects of UHPC Incorporating Fly Ash and Natural Pozzolan

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Silica fume (SF), an ultra-fine pozzolanic material that is a by-product of industrial processes, is essentially used as mineral filler in the manufacture of ultra-high-performance concrete (UHPC) at a high dosage. However, its high cost can be a significant barrier to UHPC production, particularly in areas where local sources are not available. The aim of this study is to investigate the feasibility of partially replacing SF with two other pozzolanic waste materials, fly ash (FA) and natural pozzolan (NP), for UHPC production. Six different mixes of UHPC were designed, produced and tested initially for workability and compressive strength, considering different constitutions of FA and NP to partially substitute SF. Based on fulfilling the minimum requirements of flow and compressive strength of a UHPC mix, three UHPC mixes, including the control mix with SF alone, were considered for a detailed assessment of their performance in terms of strength, shrinkage, and durability characteristics, including resistance against reinforcement corrosion. Results reveal that both pozzolanic waste materials can be used to replace SF up to 60% to produce UHPC mixes without compromising strength and durability. The outcome of this study would help in reducing the consumption of SF and produce UHPC by utilizing FA and NP as partial replacements of SF when SF is not available locally as a waste material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arjomandi, A.; Mousavi, R.; Tayebi, M.; Nematzadeh, M.; Gholampour, A.; Aminian, A.; Gencel, O.: The effect of sulfuric acid attack on mechanical properties of steel fiber-reinforced concrete containing waste nylon aggregates: experiments and RSM-based optimization. J. Build. Eng. 64, 105500 (2023). https://doi.org/10.1016/j.jobe.2022.105500

    Article  Google Scholar 

  2. Nematzadeh, M.; Fallah-Valukolaee, S.: Effectiveness of fibers and binders in high-strength concrete under chemical corrosion. Struct. Eng. Mech. 64, 243–257 (2017). https://doi.org/10.12989/sem.2017.64.2.243

    Article  Google Scholar 

  3. Tayebi, M.; Nematzadeh, M.: Effect of hot-compacted waste nylon fine aggregate on compressive stress-strain behavior of steel fiber-reinforced concrete after exposure to fire: experiments and optimization. Constr. Build. Mater. 284, 122742 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122742

    Article  Google Scholar 

  4. Nematzadeh, M.; Nazari, A.; Tayebi, M.: Post-fire impact behavior and durability of steel fiber-reinforced concrete containing blended cement–zeolite and recycled nylon granules as partial aggregate replacement. Arch. Civ. Mech. Eng. 22, 5 (2021). https://doi.org/10.1007/s43452-021-00324-1

    Article  Google Scholar 

  5. Fakoor, M.; Nematzadeh, M.: Evaluation of post-fire pull-out behavior of steel rebars in high-strength concrete containing waste PET and steel fibers: experimental and theoretical study. Constr. Build. Mater. 299, 123917 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123917

    Article  Google Scholar 

  6. Nikbakht, E.; Al-Fakih, A.; Hui, C.C.; Jake, L.Y.; Mahzabin, M.S.: An experimental investigation on the shear and flexural behavior of steel reinforced HPSCC beams. Structures 19, 286–295 (2019). https://doi.org/10.1016/j.istruc.2019.01.018

    Article  Google Scholar 

  7. ACI 239R.: Ultra-high-performance concrete: an emerging technology report, Am. Concr. Inst. ACI 239. 21 (2018)

  8. Zin, N.M.; Al-Fakih, A.; Nikbakht, E.; Teo, W.; Gad, M.A.: Influence of secondary reinforcement on behaviour of corbels with various types of high-performance fiber-reinforced cementitious composites. Materials (Basel) 12, 4159 (2019). https://doi.org/10.3390/ma1224159

    Article  Google Scholar 

  9. Shaikh, F.U.A.; Luhar, S.; Arel, H.Ş; Luhar, I.: Performance evaluation of ultrahigh performance fibre reinforced concrete—a review. Constr. Build. Mater. 232, 117152 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117152

    Article  Google Scholar 

  10. Shi, C.; Wu, Z.; Xiao, J.; Wang, D.; Huang, Z.; Fang, Z.: A review on ultra high performance concrete: part I. Raw materials and mixture design. Constr. Build. Mater. 101, 741–751 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.088

    Article  Google Scholar 

  11. Haile, B.F.; Jin, D.W.; Yang, B.; Park, S.; Lee, H.K.: Multi-level homogenization for the prediction of the mechanical properties of ultra-high-performance concrete. Constr. Build. Mater. 229, 116797 (2019). https://doi.org/10.1016/j.conbuildmat.2019.116797

    Article  Google Scholar 

  12. Chan, Y.; Chu, S.: Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cem. Concr. Res. 34, 1167–1172 (2004). https://doi.org/10.1016/j.cemconres.2003.12.023

    Article  Google Scholar 

  13. Ji, T.; Chen, B.; Zhuang, Y.; Li, F.; Huang, Z.; Liang, Y.: Effects of sand particle size and gradation on strength of reactive powder concrete. Adv. Mater. Res. 261263, 208–211 (2011). https://doi.org/10.4028/www.scientific.net/AMR.261-263.208

    Article  Google Scholar 

  14. Garas, V.Y.: Multi-scale investigation of tensile creep of ultra-high performance concrete for bridge applications 291 (2009)

  15. Hu, A.; Liang, X.; Yu, J.; Shi, Q.: Tensile characteristics of ultra-high-performance concrete. Mag. Concr. Res. 70, 314–324 (2017)

    Article  Google Scholar 

  16. Ahmad, S.; Hakeem, I.; Maslehuddin, M.: Development of an optimum mixture of ultra-high performance concrete. Eur. J. Environ. Civ. Eng. 20, 1106–1126 (2016). https://doi.org/10.1080/19648189.2015.1090925

    Article  Google Scholar 

  17. Bahraq, A.A.; Al-Osta, M.A.; Ahmad, S.; Al-Zahrani, M.M.; Al-Dulaijan, S.O.; Rahman, M.K.: Experimental and numerical investigation of shear behavior of RC beams strengthened by ultra-high performance concrete. Int. J. Concr. Struct. Mater. 13, 1–19 (2019). https://doi.org/10.1186/s40069-018-0330-z

    Article  Google Scholar 

  18. Safdar, M.; Matsumoto, T.; Kakuma, K.: Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC). Compos. Struct. 157, 448–460 (2016). https://doi.org/10.1016/j.compstruct.2016.09.010

    Article  Google Scholar 

  19. Yoo, D.Y.; Kim, S.W.; Park, J.J.: Comparative flexural behavior of ultra-high-performance concrete reinforced with hybrid straight steel fibers. Constr. Build. Mater. 132, 219–229 (2017). https://doi.org/10.1016/j.conbuildmat.2016.11.104

    Article  Google Scholar 

  20. Raheem, A.H.A.; Mahdy, M.; Mashaly, A.A.: Mechanical and fracture mechanics properties of ultra-high-performance concrete. Constr. Build. Mater. 213, 561–566 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.298

    Article  Google Scholar 

  21. Park, S.H.; Kim, D.J.; Ryu, G.S.; Koh, K.T.: Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cem. Concr. Compos. 34, 172–184 (2012). https://doi.org/10.1016/j.cemconcomp.2011.09.009

    Article  Google Scholar 

  22. Pyo, S.; Kim, H.K.: Fresh and hardened properties of ultra-high performance concrete incorporating coal bottom ash and slag powder. Constr. Build. Mater. 131, 459–466 (2017). https://doi.org/10.1016/j.conbuildmat.2016.10.109

    Article  Google Scholar 

  23. Abbas, S.; Nehdi, M.L.; Saleem, M.A.: Ultra-high performance concrete: mechanical performance, durability, sustainability and implementation challenges. Int. J. Concr. Struct. Mater. 10, 271–295 (2016). https://doi.org/10.1007/s40069-016-0157-4

    Article  Google Scholar 

  24. Ahmad, S.: Use of alternative waste materials in producing ultra-high performance concrete. In: MATEC Web Conference, pp. 1–8 (2017). https://doi.org/10.1051/matecconf/201712003014

  25. Alsalman, A.; Dang, C.N.; Micah Hale, W.: Development of ultra-high performance concrete with locally available materials. Constr. Build. Mater. 133, 135–145 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.040

    Article  Google Scholar 

  26. Ahmad, S.; Hakeem, I.; Maslehuddin, M.: Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand. Sci. World J. (2014). https://doi.org/10.1155/2014/713531

    Article  Google Scholar 

  27. Ahmad, S.; Mohaisen, K.O.; Adekunle, S.K.; Al-Dulaijan, S.U.; Maslehuddin, M.: Influence of admixing natural pozzolan as partial replacement of cement and microsilica in UHPC mixtures. Constr. Build. Mater. 198, 437–444 (2019). https://doi.org/10.1016/j.conbuildmat.2018.11.260

    Article  Google Scholar 

  28. Hasnat, A.; Ghafoori, N.: Properties of ultra-high performance concrete using optimization of traditional aggregates and pozzolans. Constr. Build. Mater. 299, 123907 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123907

    Article  Google Scholar 

  29. Matos, A.M.; Granja, J.; Nunes, S.; Barroso-Aguiar, J.L.; Azenha, M.: Hardening characterisation of a non-proprietary and more eco-friendly UHPC. Constr. Build. Mater. 363, 129803 (2023). https://doi.org/10.1016/j.conbuildmat.2022.129803

    Article  Google Scholar 

  30. Hou, D.; Wu, D.; Wang, X.; Gao, S.; Yu, R.; Li, M.; Wang, P.; Wang, Y.: Sustainable use of red mud in ultra-high performance concrete (UHPC): design and performance evaluation. Cem. Concr. Compos. 115, 103862 (2021). https://doi.org/10.1016/j.cemconcomp.2020.103862

    Article  Google Scholar 

  31. Lin, Y.; Yan, J.; Wang, Z.; Fan, F.; Zou, C.: Effect of silica fumes on fluidity of UHPC: experiments, influence mechanism and evaluation methods. Constr. Build. Mater. 210, 451–460 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.162

    Article  Google Scholar 

  32. Rougeau, P.; Borys, B.: Ultra high performance concrete with ultrafine particles other than silica fume. In: International Interactive Symposium on Ultra-High Performance Concrete, Germany, pp. 25–213 (2004)

  33. Liu, B.; Luo, G.; Xie, Y.: Effect of curing conditions on the permeability of concrete with high volume mineral admixtures. Constr. Build. Mater. 167, 359–371 (2018)

    Article  Google Scholar 

  34. Tafraoui, A.; Escadeillas, G.; Vidal, T.: Durability of the ultra high performances concrete containing metakaolin. Constr. Build. Mater. 112, 980–987 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.169

    Article  Google Scholar 

  35. Yazici, H.; Yardimci, M.Y.; Yiǧiter, H.; Aydin, S.; Türkel, S.: Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag. Cem. Concr. Compos. 32, 639–648 (2010). https://doi.org/10.1016/j.cemconcomp.2010.07.005

    Article  Google Scholar 

  36. Alsalman, A.; Dang, C.N.; Martí-Vargas, J.R.; Micah Hale, W.: Mixture-proportioning of economical UHPC mixtures. J. Build. Eng. 27, 100970 (2020). https://doi.org/10.1016/j.jobe.2019.100970

    Article  Google Scholar 

  37. Wang, X.; Wu, D.; Zhang, J.; Yu, R.; Hou, D.; Shui, Z.: Design of sustainable ultra-high performance concrete: A review. Constr. Build. Mater. 307, 124643 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124643

    Article  Google Scholar 

  38. Zhang, X.; Liu, Z.; Wang, F.: Autogenous shrinkage behavior of ultra-high performance concrete. Constr. Build. Mater. 226, 459–468 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.177

    Article  Google Scholar 

  39. Ferdosian, I.; Camões, A.; Ribeiro, M.: High-volume fly ash paste for developing ultra-high performance concrete (UHPC). Cienc. e Tecnol. Dos Mater. 29, e157–e161 (2017). https://doi.org/10.1016/j.ctmat.2016.10.001

    Article  Google Scholar 

  40. Chen, T.; Gao, X.; Ren, M.: Effects of autoclave curing and fly ash on mechanical properties of ultra-high performance concrete. Constr. Build. Mater. 158, 864–872 (2018). https://doi.org/10.1016/j.conbuildmat.2017.10.074

    Article  Google Scholar 

  41. Abdulkareem, O.M.; Ben Fraj, A.; Bouasker, M.; Khelidj, A.: Mixture design and early age investigations of more sustainable UHPC. Constr. Build. Mater. 163, 235–246 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.107

    Article  Google Scholar 

  42. Liu, Z.; El-Tawil, S.; Hansen, W.; Wang, F.: Effect of slag cement on the properties of ultra-high performance concrete. Constr. Build. Mater. 190, 830–837 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.173

    Article  Google Scholar 

  43. Yu, R.; Spiesz, P.; Brouwers, H.J.H.: Development of an eco-friendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixtures uses. Cem. Concr. Compos. 55, 383–394 (2015). https://doi.org/10.1016/j.cemconcomp.2014.09.024

    Article  Google Scholar 

  44. Amin, M.; Tayeh, B.A.; Kandil, M.A.; Agwa, I.S.; Abdelmagied, M.F.: Effect of rice straw ash and palm leaf ash on the properties of ultrahigh-performance concrete. Case Stud. Constr. Mater. 17, e01266 (2022). https://doi.org/10.1016/j.cscm.2022.e01266

    Article  Google Scholar 

  45. Lv, Y.; Yang, L.; Wang, J.; Zhan, B.; Xi, Z.; Qin, Y.; Liao, D.: Performance of ultra-high-performance concrete incorporating municipal solid waste incineration fly ash. Case Stud. Constr. Mater. 17, e01155 (2022). https://doi.org/10.1016/j.cscm.2022.e01155

    Article  Google Scholar 

  46. Huang, W.; Kazemi-Kamyab, H.; Sun, W.; Scrivener, K.: Effect of replacement of silica fume with calcined clay on the hydration and microstructural development of eco-UHPFRC. Mater. Des. 121, 36–46 (2017). https://doi.org/10.1016/j.matdes.2017.02.052

    Article  Google Scholar 

  47. Tafraoui, A.; Escadeillas, G.; Lebaili, S.; Vidal, T.: Metakaolin in the formulation of UHPC. Constr. Build. Mater. 23, 669–674 (2009)

    Article  Google Scholar 

  48. Li, Z.: Drying shrinkage prediction of paste containing meta-kaolin and ultrafine fly ash for developing ultra-high performance concrete. Mater. Today Commun. 6, 74–80 (2016). https://doi.org/10.1016/j.mtcomm.2016.01.001

    Article  Google Scholar 

  49. Arora, A.; Almujaddidi, A.; Kianmofrad, F.; Mobasher, B.; Neithalath, N.: Material design of economical ultra-high performance concrete (UHPC) and evaluation of their properties. Cem. Concr. Compos. 104, 103346 (2019). https://doi.org/10.1016/j.cemconcomp.2019.103346

    Article  Google Scholar 

  50. Liu, K.; Yu, R.; Shui, Z.; Li, X.; Guo, C.; Yu, B.; Wu, S.: Optimization of autogenous shrinkage and microstructure for ultra-high performance concrete (UHPC) based on appropriate application of porous pumice. Constr. Build. Mater. 214, 369–381 (2019). https://doi.org/10.1016/j.conbuildmat.2019.04.089

    Article  Google Scholar 

  51. Li, P.P.; Yu, Q.L.; Brouwers, H.J.H.: Effect of coarse basalt aggregates on the properties of ultra-high performance concrete (UHPC). Constr. Build. Mater. 170, 649–659 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.109

    Article  Google Scholar 

  52. Zhang, H.; Ji, T.; He, B.; He, L.: Performance of ultra-high performance concrete (UHPC) with cement partially replaced by ground granite powder (GGP) under different curing conditions. Constr. Build. Mater. 213, 469–482 (2019). https://doi.org/10.1016/j.conbuildmat.2019.04.058

    Article  Google Scholar 

  53. Ambily, P.S.; Ravisankar, K.; Umarani, C.; Dattatreya, J.K.; Iyer, N.R.: Development of ultra-high- performance geopolymer concrete. Mag. Concr. Res. 66, 82–89 (2014)

    Article  Google Scholar 

  54. ASTM International (2019) ASTM C150/C150M-18: Standard specification for Portland cement. https://doi.org/10.1520/C0150

  55. ASTM International, ASTM C1437-15: Standard test method for flow of hydraulic cement mortar, West Conshohocken, PA (2015)

  56. ASTM International: ASTM C109/C109M-16a: Standard test method for compressive strength of hydraulic cement mortars, pp. 1–10 (2016)

  57. ASTM International: ASTM C78/C78M: Standard test method for flexural strength of concrete (using simple beam with third-point loading), West Conshohocken, PA (2018). https://doi.org/10.1520/C0078

  58. Jenq, Y.S.M.; Shah, S.P.: Two parameter fracture model for concrete. J. Eng. Mech. 3, 1227–1241 (1986)

    Google Scholar 

  59. Hakeem, I.; Azad, A.K.; Ahmad, S.: Effect of steel fibers and thermal cycles on fracture properties of Ultra-high-performance concrete. J. Test. Eval. 41, 458–464 (2013). https://doi.org/10.1520/JTE20120182

    Article  Google Scholar 

  60. ASTM International: ASTM C157: Standard test method for length change of hardened hydraulic-cement mortar and concrete, West Conshohocken, PA (2008). https://doi.org/10.1520/C0157

  61. British Standards Institution, BS 1881-Part 122: Method for determination of water absorption (2011)

  62. German Institute for Standardization: DIN 1048: Testing of hardened concrete, Berlin, Germany (1991)

  63. ASTM International, ASTM C1202: Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, pp 1–8. (2019). https://doi.org/10.1520/C1202-19.2

  64. Stern, M.; Geary, A.L.: Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 104, 56–63 (1957)

    Article  Google Scholar 

  65. Al-Amoudi, O.S.B.; Ahmad, S.; Khan, S.M.S.; Maslehuddin, M.: Durability performance of concrete containing saudi natural pozzolans as supplementary cementitious material. Adv. Concr. Constr. 8, 119–126 (2019). https://doi.org/10.12989/acc.2019.8.2.119

    Article  Google Scholar 

  66. Khan, M.I.; Alhozaimy, A.M.: Properties of natural pozzolan and its potential utilization in environmental friendly concrete. Can. J. Civ. Eng. 38, 71–78 (2011). https://doi.org/10.1139/L10-112

    Article  Google Scholar 

  67. Najimi, M.; Jamshidi, M.; Pourkhorshidi, A.: Durability of concretes containing natural pozzolan. Proc. Inst. Civ. Eng. Constr. Mater 161, 113–118 (2008). https://doi.org/10.1680/coma.2008.161.3.113

    Article  Google Scholar 

  68. Broomfield, J.P.: Corrosion of Steel in Concrete: Understanding, Investigation and Repair. Spoon Press, London (2003)

    Book  Google Scholar 

  69. Xie, T.; Fang, C.; Mohamad Ali, M.S.; Visintin, P.: Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): an experimental study. Cem. Concr. Compos. 91, 156–173 (2018). https://doi.org/10.1016/j.cemconcomp.2018.05.009

    Article  Google Scholar 

  70. Bentur, A.; Igarashi, S.; Kovler, K.: Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates. Cem. Concr. Res. 31, 1587–1591 (2001). https://doi.org/10.1016/s0008-8846(01)00608-1

    Article  Google Scholar 

  71. Zhang, M.H.; Tam, C.T.; Leow, M.P.: Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete. Cem. Concr. Res. 33, 1687–1694 (2003). https://doi.org/10.1016/s0008-8846(03)00149-2

    Article  Google Scholar 

  72. Çolak, A.: Characteristics of pastes from a Portland cement containing different amounts of natural pozzolan. Cem. Concr. Res. 33, 585–593 (2003). https://doi.org/10.1016/s0008-8846(02)01027-x

    Article  Google Scholar 

  73. Bajaber, M.A.; Hakeem, I.Y.: UHPC evolution, development, and utilization in construction: a review. J. Mater. Res. Technol. 10, 1058–1074 (2021). https://doi.org/10.1016/j.jmrt.2020.12.051

    Article  Google Scholar 

  74. Li, J.; Wu, Z.; Shi, C.; Yuan, Q.; Zhang, Z.: Durability of ultra-high performance concrete—a review. Constr. Build. Mater. 255, 119296 (2020)

    Article  Google Scholar 

  75. Xu, S.; Zheng, M.; Yuan, P.; Wu, P.; Shao, R.; Liu, Z.; Liu, J.; Wu, C.: Experimental study of mechanical properties of G-UHPC against sodium sulfate attack at elevated temperature. Constr. Build. Mater. 396, 132387 (2023). https://doi.org/10.1016/j.conbuildmat.2023.132387

    Article  Google Scholar 

  76. Yang, L.; Fulin, Y.; Gaozhan, Z.: Synergistic effects of sustained loading and sulfate attack on the damage of UHPC based on lightweight aggregate. Constr. Build. Mater. 374, 130929 (2023). https://doi.org/10.1016/j.conbuildmat.2023.130929

    Article  Google Scholar 

  77. Sata, V.; Jaturapitakkul, C.; Kiattikomol, K.: Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete. Constr. Build. Mater. 21, 1589–1598 (2007). https://doi.org/10.1016/j.conbuildmat.2005.09.011

    Article  Google Scholar 

  78. Pham, V.T.; Meng, P.; Bui, P.T.; Ogawa, Y.; Kawai, K.: Effects of Shirasu natural pozzolan and limestone powder on the strength and aggressive chemical resistance of concrete. Constr. Build. Mater. 239, 117679 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117679

    Article  Google Scholar 

  79. Alonso, C.; Andrade, C.; Castellote, M.; Castro, P.: Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar. Cem. Concr. Res. 30, 1047–1055 (2000). https://doi.org/10.1016/S0008-8846(00)00265-9

    Article  Google Scholar 

  80. Al-Tholaia, M.M.H.; Azad, A.K.; Ahmad, S.; Baluch, M.H.: of corrosion resistance of different coatings for mortar–embedded steel plates. Constr. Build. Mater. 56, 74–80 (2014). https://doi.org/10.1016/j.conbuildmat.2014.01.059

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude for the support received from the Civil and Environmental Engineering Department and the Research Institute at King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia. Their assistance was invaluable in the successful completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Al-Fakih.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Bahraq, A.A., Al-Fakih, A. et al. Durability and Mechanical Aspects of UHPC Incorporating Fly Ash and Natural Pozzolan. Arab J Sci Eng 49, 5255–5266 (2024). https://doi.org/10.1007/s13369-023-08416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08416-1

Keywords

Navigation