Skip to main content

Advertisement

Log in

Potential protective effects of L-carnitine against myocardial ischemia/reperfusion injury in a rat model

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Myocardial ischemia/reperfusion (I/R) injury is a growing concern for global public health. This study seeks to explore the potential protective effects of L-carnitine (LC) against heart ischemia–reperfusion injury in rats. To induce I/R injury, the rat hearts underwent a 30-min ligation of the left anterior descending coronary artery, followed by 24 h of reperfusion. We evaluated cardiac function through electrocardiography and heart rate variability (HRV) and conducted pathological examinations of myocardial structure. Additionally, the study investigated the influence of LC on myocardial apoptosis, inflammation, and oxidative stress in the context of I/R injury. The results show that pretreatment with LC led to improvements in the observed alterations in ECG waveforms and HRV parameters in the nontreated ischemic reperfusion model group, although most of these changes did not reach statistical significance. Similarly, although without a significant difference, LC reduced the levels of proinflammatory cytokines when compared to the values in the nontreated ischemic rat group. Furthermore, LC restored the reduced expressions of SOD1, SOD2, and SOD3. Additionally, LC significantly reduced the elevated Bax expressions and showed a nonsignificant increase in Bcl-2 expression, resulting in a favorable adjustment of the Bcl-2/Bax ratio. We also observed a significant enhancement in the histological appearance of cardiac muscles, a substantial reduction in myocardial fibrosis, and suppressed CD3 + cell proliferation in the ischemic myocardium. This small-scale, experimental, in vivo study indicates that LC was associated with enhancements in the pathological findings in the ischemic myocardium in the context of ischemia/reperfusion injury in this rat model. Although statistical significance was not achieved, LC exhibits potential and beneficial protective effects against I/R injury. It does so by modulating the expression of antioxidative and antiapoptotic genes, inhibiting the inflammatory response, and enhancing autonomic balance, particularly by increasing vagal tone in the heart. Further studies are necessary to confirm and elaborate on these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data presented in this study are available upon request from the first author.

References

  • Aboubakr M, Elmahdy AM, Taima S, et al Protective effects of N acetylcysteine and vitamin E against acrylamide-induced neurotoxicity in rats

  • Aboubakr M, Elsayd F, Soliman A et al (2020) L-Carnitine and vitamin E ameliorate cardiotoxicity induced by tilmicosin in rats. Environ Sci Pollut Res 27:23026–23034

    Article  CAS  Google Scholar 

  • Aboubakr M, Farag A, Elfadadny A, et al (2023) Antioxidant and anti-apoptotic potency of allicin and lycopene against methotrexate-induced cardiac injury in rats. Environ Sci Pollut Res 1–10

  • Aubert AE, Ramaekers D, Beckers F et al (1999) The analysis of heart rate variability in unrestrained rats. Validation of method and results. Comput Methods Programs Biomed 60:197–213

    Article  CAS  PubMed  Google Scholar 

  • Aziz MM, Abd El Fattah MA, Ahmed KA, Sayed HM (2020) Protective effects of olmesartan and l-carnitine on doxorubicin-induced cardiotoxicity in rats. Can J Physiol Pharmacol 98:183–193

    Article  CAS  PubMed  Google Scholar 

  • Bajaj A, Sethi A, Rathor P et al (2015) Acute complications of myocardial infarction in the current era: diagnosis and management. J Investig Med 63:844–855

    Article  CAS  PubMed  Google Scholar 

  • Bakhta O, Blanchard S, Guihot A-L et al (2018) Cardioprotective role of colchicine against inflammatory injury in a rat model of acute myocardial infarction. J Cardiovasc Pharmacol Ther 23:446–455

    Article  CAS  PubMed  Google Scholar 

  • Bani D, Masini E, Bello MG et al (1998) Relaxin protects against myocardial injury caused by ischemia and reperfusion in rat heart. Am J Pathol 152:1367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Birnbaum Y, Birnbaum GD, Birnbaum I et al (2016) Ticagrelor and rosuvastatin have additive cardioprotective effects via adenosine. Cardiovasc Drugs Ther 30:539–550

    Article  CAS  PubMed  Google Scholar 

  • Blanca AJ, Ruiz-Armenta MV, Zambrano S et al (2016) Inflammatory and fibrotic processes are involved in the cardiotoxic effect of sunitinib: protective role of L-carnitine. Toxicol Lett 241:9–18

    Article  CAS  PubMed  Google Scholar 

  • Broderick TL, Quinney HA, Lopaschuk GD (1995) L-carnitine increases glucose metabolism and mechanical function following ischaemia in diabetic rat heart. Cardiovasc Res 29:373–378

    Article  CAS  PubMed  Google Scholar 

  • Cerutti C, Gustin MP, Paultre CZ et al (1991) Autonomic nervous system and cardiovascular variability in rats: a spectral analysis approach. Am J Physiol Circ Physiol 261:H1292–H1299

    Article  CAS  Google Scholar 

  • Chao H-H, Liu J-C, Hong H-J et al (2011) L-carnitine reduces doxorubicin-induced apoptosis through a prostacyclin-mediated pathway in neonatal rat cardiomyocytes. Int J Cardiol 146:145–152

    Article  PubMed  Google Scholar 

  • Chen C, Lu W, Wu G et al (2017) Cardioprotective effects of combined therapy with diltiazem and superoxide dismutase on myocardial ischemia-reperfusion injury in rats. Life Sci 183:50–59

    Article  CAS  PubMed  Google Scholar 

  • Comelli M, Meo M, Cervantes DO et al (2020) Integrative cardiovascular physiology and pathophysiology: rhythm dynamics of the aging heart: an experimental study using conscious, restrained mice. Am J Physiol Circ Physiol 319:H893

    Article  CAS  Google Scholar 

  • da Silva GS, de Souza CW, da Silva L et al (2017) Effect of L-carnitine supplementation on reverse remodeling in patients with ischemic heart disease undergoing coronary artery bypass grafting: a randomized, placebo-controlled trial. Ann Nutr Metab 70:106–110

    Article  PubMed  Google Scholar 

  • De Villiers C, Riley PR (2020) Mouse models of myocardial infarction: comparing permanent ligation and ischaemia-reperfusion. Dis Model Mech 13:dmm046565

  • DiNicolantonio JJ, Niazi AK, McCarty MF et al (2014) L-carnitine for the treatment of acute myocardial infarction. Rev Cardiovasc Med 15:52–62

    Article  PubMed  Google Scholar 

  • Doggett TM, Tur JJ, Alves NG, et al (2018) Assessment of cardiovascular function and microvascular permeability in a conscious rat model of alcohol intoxication combined with hemorrhagic shock and resuscitation. Trauma Ischemic Inj 61–81

  • Eckle T, Grenz A, Kohler D et al (2006) Systematic evaluation of a novel model for cardiac ischemic preconditioning in mice. Am J Physiol Circ Physiol 291:H2533–H2540

    Article  CAS  Google Scholar 

  • Elkomy A, Abdelhiee EY, Fadl SE et al (2020) L-carnitine mitigates oxidative stress and disorganization of cytoskeleton intermediate filaments in cisplatin-induced hepato-renal toxicity in rats. Front Pharmacol 11:574441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emran T, Chowdhury NI, Sarker M et al (2021) L-carnitine protects cardiac damage by reducing oxidative stress and inflammatory response via inhibition of tumor necrosis factor-alpha and interleukin-1beta against isoproterenol-induced myocardial infarction. Biomed Pharmacother 143:112139

    Article  CAS  PubMed  Google Scholar 

  • Farag A, Mandour AS, Hamabe L, et al (2022) Novel protocol to establish the myocardial infarction model in rats using a combination of medetomidine-midazolam-butorphanol (MMB) and atipamezole. Front Vet Sci 9:

  • Farag A, Mandour AS, Hendawy H et al (2023a) A review on experimental surgical models and anesthetic protocols of heart failure in rats. Front Vet Sci 10:386

    Article  Google Scholar 

  • Farag A, Mandour AS, Kaneda M, et al (2023b) Effect of trehalose on heart functions in rats model after myocardial infarction: assessment of novel intraventricular pressure and heart rate variability

  • Gehrmann J, Frantz S, Maguire CT et al (2001) Electrophysiological characterization of murine myocardial ischemia and infarction. Basic Res Cardiol 96:237–250

    Article  CAS  PubMed  Google Scholar 

  • Gu H, Xie M, Xu L et al (2015) The protective role of interleukin-18 binding protein in a murine model of cardiac ischemia/reperfusion injury. Transpl Int 28:1436–1444

    Article  CAS  PubMed  Google Scholar 

  • He H, Chang X, Gao J et al (2015) Salidroside mitigates sepsis-induced myocarditis in rats by regulating IGF-1/PI3K/Akt/GSK-3β signaling. Inflammation 38:2178–2184

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zhang B, Chen Y et al (2017) Image-guided hydrogen gas delivery for protection from myocardial ischemia–reperfusion injury via microbubbles. ACS Appl Mater Interfaces 9:21190–21199

    Article  CAS  PubMed  Google Scholar 

  • Hendawy H, Metwally E, Elfadadny A, Yoshida T, Ma D, Shimada K, Hamabe L, Sasaki K, Tanaka R (2022) Cultured versus freshly isolated adipose-derived stem cells in improvement of the histopathological outcomes in HCL-induced cystitis in a rat model. Biomed Pharmacotherapy 153:113422. https://doi.org/10.1016/j.biopha.2022.113422

  • Hou Y, Huang C, Cai X et al (2011) Improvements in the establishment of a rat myocardial infarction model. J Int Med Res 39:1284–1292

    Article  CAS  PubMed  Google Scholar 

  • Houmani H, Rodríguez-Ruiz M, Palma JM et al (2016) Modulation of superoxide dismutase (SOD) isozymes by organ development and high long-term salinity in the halophyte Cakile maritima. Protoplasma 253:885–894

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez B, Heusch G, Ovize M, Van de Werf F (2015) Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65:1454–1471

    Article  PubMed  Google Scholar 

  • Ido Y, McHowat J, Chang KC et al (1994) Neural dysfunction and metabolic imbalances in diabetic rats: prevention by acetyl-L-carnitine. Diabetes 43:1469–1477

    Article  CAS  PubMed  Google Scholar 

  • Jin J-K, Blackwood EA, Azizi K et al (2017) ATF6 decreases myocardial ischemia/reperfusion damage and links ER stress and oxidative stress signaling pathways in the heart. Circ Res 120:862–875

    Article  CAS  PubMed  Google Scholar 

  • Karanth J, Jeevaratnam K (2010) Effect of carnitine supplementation on mitochondrial enzymes in liver and skeletal muscle of rat after dietary lipid manipulation and physical activity

  • Khan MAB, Hashim MJ, Mustafa H, et al (2020) Global epidemiology of ischemic heart disease: results from the global burden of disease study. Cureus 12:

  • Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256–262

    Article  CAS  PubMed  Google Scholar 

  • Krüger C, Kalenka A, Haunstetter A et al (1997) Baroreflex sensitivity and heart rate variability in conscious rats with myocardial infarction. Am J Physiol Circ Physiol 273:H2240–H2247

    Article  Google Scholar 

  • Li H-R, Zheng X-M, Liu Y, et al (2022) L-Carnitine alleviates the myocardial infarction and left ventricular remodeling through Bax/Bcl-2 signal pathway. Cardiovasc Ther 2022:

  • Li M, Xu S, Geng Y et al (2019) The protective effects of L-carnitine on myocardial ischaemia–reperfusion injury in patients with rheumatic valvular heart disease undergoing CPB surgery are associated with the suppression of NF-κB pathway and the activation of Nrf2 pathway. Clin Exp Pharmacol Physiol 46:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Li RA, Leppo M, Miki T et al (2000) Molecular basis of electrocardiographic ST-segment elevation. Circ Res 87:837–839

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Wang H, Li J et al (2013) κ-Opioid receptor stimulation modulates TLR4/NF-κB signaling in the rat heart subjected to ischemia–reperfusion. Cytokine 61:842–848

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods 25:402–408

  • Magruder JT, Crawford TC, Lin Y-A et al (2017) Selective localization of a novel dendrimer nanoparticle in myocardial ischemia-reperfusion injury. Ann Thorac Surg 104:891–898

    Article  PubMed  Google Scholar 

  • Malone JI, Cuthbertson DD, Malone MA, Schocken DD (2006) Cardio-protective effects of carnitine in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 5:1–6

    Article  Google Scholar 

  • Mandour AS, Farag A, Helal MAY et al (2023) Non-invasive assessment of the intraventricular pressure using novel color M-mode echocardiography in animal studies: current status and future perspectives in veterinary medicine. Animals 13:2452

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamed ET, Safwat GM (2016) Evaluation of cardioprotective activity of Lepidium sativum seed powder in albino rats treated with 5-fluorouracil. Beni-Suef Univ J Basic Appl Sci 5:208–215

    Google Scholar 

  • Najafi M (2013) Effects of postconditioning, preconditioning and perfusion of L-carnitine during whole period of ischemia/reperfusion on cardiac hemodynamic functions and myocardial infarction size in isolated rat heart. Iran J Basic Med Sci 16:648

    PubMed  PubMed Central  Google Scholar 

  • Nakamura J, Koh N, Sakakibara F et al (1998) Polyol pathway hyperactivity is closely related to carnitine deficiency in the pathogenesis of diabetic neuropathy of streptozotocin-diabetic rats. J Pharmacol Exp Ther 287:897–902

    CAS  PubMed  Google Scholar 

  • Nicolini P, Ciulla MM, Asmundis CDE et al (2012) The prognostic value of heart rate variability in the elderly, changing the perspective: from sympathovagal balance to chaos theory. Pacing Clin Electrophysiol 35:621–637

    Article  Google Scholar 

  • Nossuli TO, Lakshminarayanan V, Baumgarten G et al (2000) A chronic mouse model of myocardial ischemia-reperfusion: essential in cytokine studies. Am J Physiol Circ Physiol 278:H1049–H1055

    Article  CAS  Google Scholar 

  • Nuñez G, Clarke MF (1994) The Bcl-2 family of proteins: regulators of cell death and survival. Trends Cell Biol 4:399–403

    Article  PubMed  Google Scholar 

  • O’Brien D, Chunduri P, Iyer A, Brown L (2010) l-Carnitine attenuates cardiac remodelling rather than vascular remodelling in deoxycorticosterone acetate-salt hypertensive rats. Basic Clin Pharmacol Toxicol 106:296–301

    Article  PubMed  Google Scholar 

  • Omori Y, Mano T, Sakata Y et al (2011) L-Carnitine supplementation as treatment for cardiac fibrosis and heart failure with preserved ejection fraction. J Card Fail 17:S154

    Article  Google Scholar 

  • Pape M, Engelhard K, Eberspächer E et al (2006) The long-term effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats. Anesth Analg 103:173–179

    Article  CAS  PubMed  Google Scholar 

  • Peltola M (2010) Analysis of heart rate variability from 24-hour ambulatory electrocardiographic recordings. Acta Univ Ouluensis D Medica 1087

  • Pizzo E, Berrettoni S, Kaul R et al (2022) Heart rate variability reveals altered autonomic regulation in response to myocardial infarction in experimental animals. Front Cardiovasc Med 9:843144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozzati A, Pancaldi LG, Di Pasquale G et al (1996) Transient sympathovagal imbalance triggers “ischemic” sudden death in patients undergoing electrocardiographic Holter monitoring. J Am Coll Cardiol 27:847–852

    Article  CAS  PubMed  Google Scholar 

  • Preda MB, Burlacu A (2010) Electrocardiography as a tool for validating myocardial ischemia–reperfusion procedures in mice. Comp Med 60:443–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao Z, Ma J, Liu H (2011) Evaluation of the antioxidant potential of Salvia miltiorrhiza ethanol extract in a rat model of ischemia-reperfusion injury. Molecules 16:10002–10012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redfors B, Shao Y, Omerovic E (2012) Myocardial infarct size and area at risk assessment in mice. Exp Clin Cardiol 17:268

    PubMed  PubMed Central  Google Scholar 

  • Richardson RS, Wagner H, Mudaliar SRD et al (2000) Exercise adaptation attenuates VEGF gene expression in human skeletal muscle. Am J Physiol Circ Physiol 279:H772–H778

    Article  CAS  Google Scholar 

  • Roy B, Ghatak S (2013) Métodos não-lineares para avaliar mudanças na variabilidade da frequência cardíaca em pacientes com diabetes tipo 2. Arq Bras Cardiol 101:317–327

    PubMed  Google Scholar 

  • Russo I, Penna C, Musso T et al (2017) Platelets, diabetes and myocardial ischemia/reperfusion injury. Cardiovasc Diabetol 16:1–11

    Article  Google Scholar 

  • Saleh M, Ambrose JA (2018) Understanding myocardial infarction. F1000Research 7

  • Shaffer F, Ginsberg JP (2017) An overview of heart rate variability metrics and norms. Front Public Health 5:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Sima AA, Ristic H, Merry A et al (1996) Primary preventive and secondary interventionary effects of acetyl-L-carnitine on diabetic neuropathy in the bio-breeding Worcester rat. J Clin Invest 97:1900–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surendran A, Aliani M, Ravandi A (2019) Metabolomic characterization of myocardial ischemia-reperfusion injury in ST-segment elevation myocardial infarction patients undergoing percutaneous coronary intervention. Sci Rep 9:11742

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42:1075–1081

    Article  CAS  PubMed  Google Scholar 

  • Thangasamy T, Subathra M, Sittadjody S et al (2008) Role of L-carnitine in the modulation of immune response in aged rats. Clin Chim Acta 389:19–24

    Article  CAS  PubMed  Google Scholar 

  • Thygesen K, Alpert JS, White HD et al (2007) Universal definition of myocardial infarction. Circulation 116:2634–2653

    Article  PubMed  Google Scholar 

  • Vandervelde S, van Amerongen MJ, Tio RA et al (2006) Increased inflammatory response and neovascularization in reperfused vs. nonreperfused murine myocardial infarction. Cardiovasc Pathol 15:83–90

    Article  PubMed  Google Scholar 

  • Von Borell E, Langbein J, Després G et al (2007) Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals—a review. Physiol Behav 92:293–316

    Article  Google Scholar 

  • Wanderer AA (2008) Ischemic-reperfusion syndromes: biochemical and immunologic rationale for IL-1 targeted therapy. Clin Immunol 128:127–132

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Cheng Y, Xue H et al (2015) Fargesin as a potential β1 adrenergic receptor antagonist protects the hearts against ischemia/reperfusion injury in rats via attenuating oxidative stress and apoptosis. Fitoterapia 105:16–25

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li Y, Li L et al (2018) Protective effects of Shenfu injection against myocardial ischemia–reperfusion injury via activation of eNOS in rats. Biol Pharm Bull 41:1406–1413

    Article  PubMed  Google Scholar 

  • Wang Y, Qi X, Wang C et al (2017) Effects of propofol on myocardial ischemia-reperfusion injury in rats with type-2 diabetes mellitus. Biomed Reports 6:69–74

    Article  CAS  Google Scholar 

  • Wang Y, Zhang H, Chai F et al (2014) The effects of escitalopram on myocardial apoptosis and the expression of Bax and Bcl-2 during myocardial ischemia/reperfusion in a model of rats with depression. BMC Psychiatry 14:1–7

    Article  Google Scholar 

  • Wehrens XHT, Kirchhoff S, Doevendans PA (2000) Mouse electrocardiography: an interval of thirty years. Cardiovasc Res 45:231–237

    Article  CAS  PubMed  Google Scholar 

  • Xhyheri B, Manfrini O, Mazzolini M et al (2012) Heart rate variability today. Prog Cardiovasc Dis 55:321–331

    Article  PubMed  Google Scholar 

  • Xue M, Chen X, Guo Z et al (2017) L-carnitine attenuates cardiac dysfunction by ischemic insults through Akt signaling pathway. Toxicol Sci 160:341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zambrano S, Blanca AJ, Ruiz-Armenta MV et al (2013) L-Carnitine protects against arterial hypertension-related cardiac fibrosis through modulation of PPAR-γ expression. Biochem Pharmacol 85:937–944

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Du Q, Yang Y et al (2017) The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed Pharmacother 91:1042–1052

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Chen S, Wang B, Cai D (2020) L-Carnitine reduces myocardial oxidative stress and alleviates myocardial ischemia-reperfusion injury by activating nuclear transcription-related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) signaling pathway. Med Sci Monit Int Med J Exp Clin Res 26:e923251–e923261

    CAS  Google Scholar 

  • Zipes DP (1990) Influence of myocardial ischemia and infarction on autonomic innervation of heart. Circulation 82:1095–1105

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was supported by a full scholarship provided by the Egypt-Japan Education Partnership (EJEP) from the Ministry of Higher Education, Egypt.

Author information

Authors and Affiliations

Authors

Contributions

Experiment design: Ahmed Farag, Ahmed S. Mandour, Ryou Tanaka. Induction of model: Ahmed Farag. Electrocardiography: Ahmed Farag, Ahmed S. Mandour. Investigation: Ahmed Elfadadny, Sai Koung Ngeun, Masahiro Kaneda. Data collection and statistical analysis: Ahmed Farag, Mohamed Aboubakr. Writing and drafting: Ahmed Farag, Ahmed Elfadadny. Critical editing: Ahmed S. Mandour. Supervision: Ryou Tanaka. All authors reviewed and edited the final version.

Corresponding author

Correspondence to Ahmed Farag.

Ethics declarations

Ethics approval

The experimental procedures were approved by the local ethical committee of the Tokyo University of Agriculture and Technology, Japan (Approval No R04-185).

Consent for publication

All authors approved the final version.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The manuscript is not previously published in the same or very similar form in other journal. The manuscript is not currently under consideration in other journals.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farag, A., Elfadadny, A., Mandour, A.S. et al. Potential protective effects of L-carnitine against myocardial ischemia/reperfusion injury in a rat model. Environ Sci Pollut Res 31, 18813–18825 (2024). https://doi.org/10.1007/s11356-024-32212-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32212-5

Keywords

Navigation