Skip to main content

Advertisement

Log in

Monitoring network optimization and impact of fish farming upon water quality in the Três Marias Hydroelectric Reservoir, Brazil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hydroelectric power is the main source of electrical energy in Brazil. Electrical energy providers have the duty to monitor water quality in reservoirs to preserve water quality and support best management practices that enable multiple water uses, including fish production. In this context, the objectives of this study were (i) to perform a historical evaluation of water quality in Três Marias Reservoir, (ii) to present an optimization of the water quality monitoring network, and (iii) to evaluate the evolution and impact of fish farming upon surface water quality by using secondary data measured in situ and remote sensing. A systematic approach was applied to analyze historical water quality data. Principal component analysis (PCA) and cluster analysis (CA) were applied to identify the most important parameters and monitoring points. Images obtained from Sentinel 2 were treated by contrast to quantify simple and weighted densities of fish farming activities in the region while regression analysis was performed to verify correlations between these densities and water quality parameters. Results showed that the pH and total suspended solids were the most important parameters for characterizing water quality, especially near tributaries, and that monitoring points could be grouped into three clusters (upstream, central, and downstream regions) with distinct water quality conditions. The PCA indicated that there is no redundance among parameters nor monitoring stations and that areas near tributaries must be prioritized for monitoring as these are important sources of suspended solids. Remote sensing images showed that the area occupied by fish farms has increased in the reservoir from 2016 to 2022 and the methodology used for this purpose in this study may be applied to other bodies of water. Chlorophyll-a showed a direct relationship with the density of fish farms indicating a possible influence of nutrient input to the reservoir by this activity. These results provide valuable information to support decision-making related to water management in the reservoir.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data used in this manuscript may be made available upon reasonable request.

References

  • Achieng AO, Raburu PO, Kipkorir EC, Ngodhe SO, Obiero KO, Ani-sabwa J (2017) Assessment of water quality using multivariate techniques in River Sosiani Kenya. Environ Monitor Assess 189(6):279–291. https://doi.org/10.1007/s10661-017-5992-5

    Article  CAS  Google Scholar 

  • Agostinho A A, Gomes LC, Pelicice FM (2007) Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil

  • Alawadi F (2010) Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI). Proc Int Soc Opt Eng 7825:1–14

    Google Scholar 

  • Anand A, Krishnan P, Kantharajan G, Suryavanshi A, Kawishwar P, Raj U, Rao CS, Choudhury SB, Manjulatha C, Babu DE (2020) Assessing the water spread area available for fish culture and fish production potential in inland lentic water bodies using remote sensing: a case study from Chhattisgarh State, India. Remote Sens Appl Soc Environ 17:100273. https://doi.org/10.1016/j.rsase.2019.100273

    Article  Google Scholar 

  • Andrade-Costa D, Soares de Azevedo JP, dos Santos MA et al (2020) Water quality assessment based on multivariate statistics and water quality index of a strategic river in the Brazilian Atlantic Forest. Sci Rep 10:22038. https://doi.org/10.1038/s41598-020-78563-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass-Becking LB, Kaplan IR, Moore D (1960) Limits of the natural environment in terms of pH and oxidation-reduction potentials. The Journal of Geology: 243–284

  • Bicudo CEM, Bicudo RMT (1970) Algas de águas Continentais Brasileiras-Chave Ilustrada para Identificação de Gêneros. Fundação Brasileira para o Desenvolvimento do Ensino de Ciências

  • Bicudo CEM, Menezes M (2006) Gêneros de algas de águas continentais do Brasil. Rima

  • Boucher J, Weathers KC, Norouzi H, Steele B (2018) Assessing the effectiveness of Landsat 8 chlorophyll-a retrieval algorithms for regional freshwater monitoring. Ecol Appl 28:1044–1054

    Article  PubMed  Google Scholar 

  • Bourrelly P (1981) Les Algues d’Eau Douce. Tome II. Les Algues Jaune set Brunes, Chromophycees, Chrysophycees, Phéophycées, Xanthophycé eset Diatomées. Second Éditions N. Boubée é Cie

  • Boyd CE (1986) Influence of evaporation excess on water requirements for fish farming. In: Proceedings of the Conference on Climate and Water Management. American Meteorological Society, Boston, MA, pp 62–64

    Google Scholar 

  • Boyd CE, Queiroz JF (1997) Aquaculture pond effluent management. Aqua Asia, Bangkok 2(2):43–46

    Google Scholar 

  • BRASIL (1998) Ministério da Saúde. Fundação Nacional da Saúde. Centro Nacional de Epidemiologia. Informe Epidemiológico do SUS. Teixeira e cols. Seleção das doenças de notificação compulsória: critérios e recomendações para as três esferas de governo. IESUS, VII (1), Jan/Mar

  • Brasil (2005) Conselho Nacional do Meio Ambiente. Resolução n° 357 de 29 de abril de 2005. Diário Oficial da União, Brasília

  • Brasil (2010) Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica. Manual integrado de vigilância, prevenção e controle de doenças transmitidas por alimentos. Brasília: Editora do Ministério da Saúde

  • Brasil (2011) Ministério da Saúde. Portaria nº 2914 de 12 de dezembro de 2011. Brasília

  • Brasil (2015) IN nº 4, de 4 de primeiro semestre. Institui o programa nacional de sanidade de animais aquáticos de cultivo – “Aquicultura com sanidade”. Ministério da Pesca e Aquicultura. DOU seção 1, 47–52. Recuperado de http://www.mpa.gov.br (Acesso em 30/12/2021)

  • Brasil (2017) Ministério da Saúde. Portaria de Consolidação nº 5, de 28 de setembro de 2017. Anexo XX - Do controle e da vigilância da qualidade da água para consumo humano e seu padrão de potabilidade (Origem: PRT MS/GM 2914/2011) Diário Oficial da União, 03 de out. 2017

  • Brasil (2020) Ministério da Agricultura, Pecuária e Abastecimento. BOLETIM DA PISCICULTURA EM ÁGUAS DA UNIÃO 2018 – 2019. Relatório Anual de Produção – RAP. Recuperado de https://www.gov.br/agricultura/pt-br/assuntos/aquicultura-e-pesca/aquicultura-1/copy_of_RAP2020DEPOA.pdf

  • Brivio PA, Giardino C, Zilioli E (2001) Determination of chlorophyll concentration changes in Lake Garda using an image-based radiative transfer code for Landsat TM images. Int J Remote Sens 22(3):487–502

    Article  Google Scholar 

  • Calazans GM et al (2018a) Using multivariate techniques as a strategy to guide optimization projects for the surface water quality network monitoring in the Velhas river basin Brazil. Environ Monit Assess 190(12):726

    Article  PubMed  Google Scholar 

  • Calazans GM et al (2018b) The use of multivariate statistical methods for optimization of the surface water quality network monitoring in the Paraopeba river basin Brazil. Environ Monit Assess 190(8):491

    Article  PubMed  Google Scholar 

  • Castro CC, Gómez JAD, Martín JD, Sánchez BAH, Arango JLC, Tuya FAC, Díaz-Varela R (2020) An UAV and satellite multispectral data approach to monitor water quality in small reservoirs. Remote Sensing 12(9):1514

    Article  ADS  Google Scholar 

  • CEMIG (2006) RELATÓRIO DE VIAGEM – UHE TRÊS MARIAS. Belo Horizonte, 09 de julho de 2006

  • CEMIG (2009) Pescadores do Saber. Loures, R. C, Junqueira, N. T, Pompeu, P. dos S. Belo Horizonte: Cemig

  • Chawla I, Karthikeyan L, Mishra AK (2020) A review of remote sensing applications for water security: quantity, quality, and extremes. Journal of Hydrology 585

  • Cheung MY, Liang S, Lee J (2013) Toxin-producing cyanobacteria in freshwater: a review of the problems, impact on drinking water safety, and efforts for protecting public health. J Microbiol 51:1–10

    Article  CAS  PubMed  Google Scholar 

  • CODEVASF Aquicultura e pesca no reservatório de Três Marias – MG. Recuperado de https://www.codevasf.gov.br/linhas-de-negocio/desenvolvimento-territorial/recuros-pesqueiros-e-aquicultura/aquicultura-e-pesca-no-reservatorio-de-tres-marias-mg. Acesso em: 10/01/2022.

  • Cole GA (1994) Textbook of limnology: Prospect Heights, Illinois.

  • Curtarelli MP, Alcântara EH, Rennó CD, Stech JL (2014) Physical changes within a large tropical hydroelectric reservoir induced by wintertime cold front activity. Hydrol Earth Syst Sci 18:3079–3093. https://doi.org/10.5194/hess-18-3079-2014

    Article  ADS  Google Scholar 

  • Dall’Olmo G, Gitelson A, Rundquist DC (2003) Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters. Geophysical Research Letters 30: 1–4

  • da Silveira Barcellos D, de Souza FT (2022) Optimization of water quality monitoring programs by data mining. Water Research 221:118805. https://doi.org/10.1016/j.watres.2022.118805

  • Deberdt GLB, Calijuri MC, Minoti RA (2004) Produtividade primária na represa Salto Grande. In R. Henry (Ed.), Ecologia de reservatórios: Estrutura, função e aspectos sociais. Botucatu: Fapesp/Fundbio

  • EMBRAPA (2020) Caracterização da cadeia produtiva da tilápia nos principais polos de produção do Brasil / autores, Manoel Xavier Pedroza Filho et al. Palmas, TO: Embrapa Pesca e Aquicultura

  • Esteves FA (2011) Fundamentos de Limnologia (3rd ed.) Rio de Janeiro: Ed. Interciência

  • Fritsch FE, Rich F (1929) Contributions to our knowledge of the freshwater algae of Africa. 8. Bacillariales from Griqualand West. Transactions of the Royal Society of South Africa 18(1–2): 93–123

  • Gitelson AA, Dall’Olmo G, Moses W, Rundquist DC, Barrow T, Fisher TR, Gurlin D, Holz J (2008) A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation. Remote Sens Environ 112:3582–3593

    Article  ADS  Google Scholar 

  • Gomes LNL (2008) Estudo da associação entre parâmetros bióticos a abióticos e a ocorrência de florações de cianobactérias no reservatório de Vargem das Flores – MG (Doctoral dissertation, Escola de Engenharia, Universidade Federal de Minas Gerais)

  • Hair JFJ, Black WC, Babin BJ, Anderson RE, Tatham RL (2009) Análise multivariada de dados [recurso eletrônico]. 6 ed. – Dados eletrônicos – Porto Alegre: Bookman, 687

  • Hidalgo IG, Paredes-Arquiola J, Andreu J, Lerma-Elvira N, Lopes JEG, Cioffi F (2020) Hydropower generation in future climate scenarios. Energy Sustain Dev 59:180–188. https://doi.org/10.1016/j.esd.2020.10.007

    Article  Google Scholar 

  • IGAM (2019) SF4 – Entorno da Represa de Três Marias. Recuperado de http://comites.igam.mg.gov.br/comites-estaduais-mg/sf4-entorno-da-represa-de-tres-marias. Acesso em 02/01/2022

  • Instituto Mineiro de Gestão das Águas (IGAM) (2009) Monitoramento da Qualidade das Águas Superficiais na Sub-Bacia do Rio das Velhas Em 2009. Belo Horizonte, p.278

  • Jiang J, Tang S, Han D, Fu G, Solomatine D, Zheng Y (2020) A comprehensive review on the design and optimization of surface water quality monitoring networks. Environmental Modelling Software 132

  • Junior ACR, Bruni AC, Ruiz BD, Midaglia CLV, Roubicek DA, Savazzi EA, Moreno F N, Carvalho MC, Lamparelli MC, Junior NM (2020) Otimização da frequência da rede básica de monitoramento da qualidade das águas superficiais doces no Estado de São Paulo. Cetesb Companhia Ambiental Do Estado De São Paulo

  • Kabbara N, Benkhelil J, Awad M, Barale V (2008) Monitoring water quality in the coastal area of Tripoli (Lebanon) using high-resolution satellite data. ISPRS J Photogramm Remote Sens 63:488–495

    Article  ADS  Google Scholar 

  • Lamparelli MC (2004) Trophic level in water bodies of São Paulo: evaluation of measurement methods. PhD Thesis, USP-São Paulo University, São Paulo, Pages 1–235

  • Macedo CF, Sipauba-Tavares LH (2010) Eutrophication and Water Quality in fish Farms: Consequences and Recommendations. Boletim do Instituto de Pesca 36:149–163

    Google Scholar 

  • Marcelino A, Santos M, Xavier V, Bezerra C, Silva C, Amorim M, et al. Diffusive emission of methane and carbon dioxide from two hydropower reservoirs in Brazil. Braz J Biol [Internet]. 2015May;75(2):331–8. https://doi.org/10.1590/1519-6984.12313

  • Marouelli MH, Emeric RHS, Cavalcanti CG, Rutkowski E, Sales MEDC, Segundo SM, Castro ID (1988) Bases para um manejo racional de reservatórios. Administração Pesqueira no reservatório de Itaipu. Limnologia e Manejo de Represas, Monografias em Limnologia

  • Matsuzaki M, Mucci JLN, Rocha AA (2004) Comunidade fitoplanctônica de um pesqueiro na cidade de São Paulo. Revista de Saúde Pública, 38(5)

  • Mercante CTJ, Martins YK, do Carmo CF, Osti JS, Pinto CSRM, Tucci A (2012). Qualidade Da água Em Viveiro De Tilápia Do Nilo (Oreochromis niloticus): Caracterização Diurna De variáveis físicas, químicas E biológicas. Bioikos, São Paulo, Brasil. https://periodicos.puccampinas.edu.br/bioikos/article/view/843

    Google Scholar 

  • Mishra S, Mishra DR (2012) Normalized difference chlorophyll index: a novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens Environ 117:394–406

    Article  ADS  Google Scholar 

  • Moura AN, Bittencourt-Oliveira MC, Dantas EW, Neto JDTA (2007) Phytoplankton associations: a tool to understanding dominance events in a tropical Brazilian reservoir. Acta Botanica Brasilica 21:641–648

    Article  Google Scholar 

  • Nilsen JP (1984) Tropical lakes—functional ecology and future development: the need for a process-orientated approach. Hydrobiologia 113(1):231–242

    Article  Google Scholar 

  • Ogashawara I, Mishra D. R., Gitelson A.A. (2017) Chapter 1 - Remote sensing of inland waters: background and current state-of-the-art, bio-optical modeling and remote sensing of inland waters, Elsevier, Pages 1–24

  • Oliveira KL, Ramos RL, Oliveira SC, Christofaro C (2021a) Water quality index and spatio-temporal perspective of a large Brazilian water reservoir. Water Supply 21(3):971–982. https://doi.org/10.2166/ws2020374

    Article  Google Scholar 

  • Oliveira KL, Ramos RL, Oliveira SC et al (2021b) Spatial variability of surface water quality in a large Brazilian semiarid reservoir and its main tributaries. Environ Monit Assess 193:409. https://doi.org/10.1007/s10661-021-09194-9

    Article  CAS  PubMed  Google Scholar 

  • Olsen RL, Chappell RW, Loftis JC (2012) Water quality sample collection, data treatment and results presentation for principal components analysis - literature review and Illinois River watershed case study. Water Res 46(9):3110–3122. https://doi.org/10.1016/j.watres.2012.03.028

    Article  CAS  PubMed  Google Scholar 

  • Ouyang Y (2005) Evaluation of river water quality monitoring station by principal component analysis. Water Res 39:2621–2635

    Article  CAS  PubMed  Google Scholar 

  • Pinto-Coelho RM (1998) Effects of eutrophication on seasonal patterns of mesozooplankton in a tropical reservoir: a 4-year study in Pampulha Lake Brazil. Freshw Biol 40(1):159–173

    Article  Google Scholar 

  • Pizani F, Maillard P, Amorim CC (2022) Estimativa de Parâmetros de Qualidade da Água em Ambientes Lênticos Por Meio de Tecnologias de Sensoriamento Remoto: uma Revisão das Últimas Duas Décadas Revista Brasileira de Cartografia 74(3): 729–754. 1014393/rbcv74n3–65357

  • Pizani FMC, Ferreira AFF, Maillard P (2022) Estimativa de Parâmetros Não-Opticamente Ativos de Qualidade da Água a Partir de Sensores Sentinel-2/MSI e Landsat-8/OLI Caminhos de Geografia, 23(90): 399–414. 1014393/RCG239061589

  • Pizani FMC, Maillard P, Ferreira AFF, Amorim CC (2020) Estimation of water quality in a reservoir from Sentinel-2 MSI and Landsat-8 OLI sensors. ISPRS Ann Photogramm Remote Sens Spat Inform Sci 5(3):401–408

    Article  Google Scholar 

  • Pizani FMC, de Amorim CC, Maillard P (2023) Determining the most suitable Sentinel-2 indices for turbidity and chlorophyll-a concentration for an oligotrophic to mesotrophic reservoir in Brazil. Int J Hydrol Sci Technol. https://doi.org/10.1504/IJHST.2023.10057236

    Article  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

  • Reynolds CS (1994) The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and rivers. Hydrobiologia 289:9–21

    Article  Google Scholar 

  • Rocha GDSC (2006) Desvio de rios para a construção de barragens [Doctoral dissertation, Universidade de São Paulo]

  • Rojo C, Alvarez CM, Arauzo M (1994) An elementary structural analysis of river phytoplankton. Hydrobiologia 289:43–55

    Article  Google Scholar 

  • Rolla ME, Dabés MBGS, França RC, Ferreira EMVM (1992) Inventário limnológico do Rio Grande na área de influência da futura usina hidrelétrica (UHE) de Igarapava. Acta Limnol Bras 4:139–162

    Google Scholar 

  • Sagan V, Petersonb KT, Maimaitijianga M, Sidikeb P, Sloan J, Greeling BA, Maaloufe S, Adams C (2020) Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Science Reviews 205

  • Sambur M (1975) Selection of acoustic features for speaker identification. IEEE Trans Acoust Speech Signal Process 23(2):176–182

    Article  Google Scholar 

  • Sant’Anna CL, Azevedo MTP, Agujaro LF, Carvalho MC, Carvalho LR, Souza RCR (2006) Manual ilustrado para identificação e contagem de Cianobactérias planctônicas de águas continentais brasileiras. Rio de Janeiro: Sociedade Brasileira de Ficologia

  • Schar D, Klein EY, Laxminarayan R et al (2020) Global trends in antimicrobial use in aquaculture. Sci Rep 10:21878. https://doi.org/10.1038/s41598-020-78849-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W, Qin B (2023) Sediment and nutrient trapping by river dams: a critical review based on 15-year big data. Current Pollution Reportshttps://doi.org/10.1007/s40726-023-00258-7

  • Silveira CDS, Filho FDADS, Martins ESPR, Oliveira JL, Costa AC, Nobrega MT, Souza SAD, Silva RFV (2016) Mudanças climáticas na bacia do rio São Francisco: Uma análise para precipitação e temperatura. Revista Brasileira de Recursos Hídricos 21(2): 416–428. https://doi.org/10.21168/rbrhv21n2p416-428

  • Straškraba M, Tundisi JG (1999) Reservoir ecosystem functioning: theory and application. In Theoretical reservoir ecology and its applications: 565–597

  • Straškraba M, Tundisi JG (2000) Reservatórios como ecossistemas. In Diretrizes para o gerenciamento de lagos: 41–106. São Carlos: Rima

  • Tahiru AA, Doke DA, Baatuuwie BN (2020) Effect of land use and land cover changes on water quality in the Nawuni Catchment of the White Volta Basin, Northern Region Ghana. Appl Water Sci 10(6):198. https://doi.org/10.1007/s13201-020-01272-6

    Article  ADS  CAS  Google Scholar 

  • Thornton KW, Kimmel BL, Payne FE (1990) Reservoir Limnology: ecological perspectives. Wiley-interscience Publ, New York, p 246

    Google Scholar 

  • Tundisi JG (1999) Reservatórios como sistemas complexos: Teoria, aplicações e perspectivas para usos múltiplos. In Ecologia de reservatórios: Estrutura, função e aspectos sociais: 22–38. Botucatu: FAPESP

  • Tundisi JG, Matsumura-Tundisi T (2008) Limnologia. Oficina de Textos. ISBN: 9788586238666

  • Ustaoğlu F, Tepe Y, Taş B (2020) Assessment of stream quality and health risk in a subtropical Turkey river system: a combined approach using statistical analysis and water quality index. Ecol Ind 113:105815. https://doi.org/10.1016/j.ecolind.2019.105815

    Article  CAS  Google Scholar 

  • Varol M (2020) Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: a case study. Environ Pollut 266:115417. https://doi.org/10.1016/j.envpol.2020.115417

    Article  CAS  PubMed  Google Scholar 

  • Vincent RK, Qin X, McKay RML, Miner J, Czajkowski K, Savino J, Bridgeman T (2004) Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie. Remote Sens Environ 89:381–392

    Article  ADS  Google Scholar 

  • Von Sperling M (2014) Introdução à Qualidade das Águas e ao Tratamento de Esgotos (2nd ed.) UFMG/DESA

  • Werner VR (2002) Cyanophyceae/Cyanobacteria no sistema de lagoas e lagunas da planície costeira do estado do Rio Grande do Sul, Brasil [Doctoral dissertation, Instituto de Biociências, Universidade Estadual Paulista]

  • Wetzel RG (2003) Limnology: lake and river ecosystems. Gulf Professional Publishing

  • Xia J, Zeng J (2022) Environmental factors assisted the evaluation of entropy water quality indices with efficient machine learning technique. Water Resour Manage 36:2045–2060. https://doi.org/10.1007/s11269-022-03126-z

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the support provided by Companhia Energética de Minas Gerais (CEMIG), Agência Nacional de Energia Elétrica (ANEEL) and Universidade Federal de Minas Gerais (UFMG) for funding the project GT-0607 “Intelligent Water Quality Monitoring through the Development of Photooptical Algorithm.”

Author information

Authors and Affiliations

Authors

Contributions

MCVMS: conceptualization, methodology, investigation, writing original draft, writing, review, and editing. CC: conceptualization, methodology, investigation, writing original draft, writing, review, and editing. LEMR: conceptualization, methodology, investigation, and writing original draft. PM: conceptualization, methodology, investigation, writing original draft, writing, review, and editing. CA: conceptualization, writing, review, editing, project administration, funding acquisition, and supervision.

Corresponding author

Correspondence to Camila C Amorim.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Xianliang Yi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1205 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starling, M.C.V.M., Christofaro, C., Macedo-Reis, L.E. et al. Monitoring network optimization and impact of fish farming upon water quality in the Três Marias Hydroelectric Reservoir, Brazil. Environ Sci Pollut Res 31, 13455–13470 (2024). https://doi.org/10.1007/s11356-023-31761-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-31761-5

Keywords

Navigation