Skip to main content
Log in

Involvement of the heat shock response (HSR) regulatory pathway in cadmium-elicited cerebral damage

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The heat shock response (HSR) is a cellular protective mechanism that is characterized by the induction of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) in response to diverse cellular and environmental stressors, including cadmium (Cd). However, little is known about the relationship between the damaging effects of Cd and the HSR pathway in the chicken cerebrum following Cd exposure. To explore whether Cd exposure elicits cerebral damage and triggers the HSR pathway, chicks were exposed to Cd in the daily diet at different concentrations (35, 70, or 140 mg/kg feed) for 90 days, while a control group was fed the standard diet without Cd. Histopathological examination of cerebral tissue from Cd-exposed chickens showed neuronal damage, as evidenced by swelling and degeneration of neurons, loss of neurons, and capillary damage. Cd exposure significantly increased mRNA expression of HSF1, HSF2, and HSF3, and mRNA and protein expression of three major stress-inducible HSPs (HSP60, HSP70, and HSP90). Moreover, Cd exposure differentially modulated mRNA expression of small HSP (sHSPs), most notably reducing expression of HSP27 (HSPB1). Furthermore, Cd exposure increased TUNEL-positive neuronal apoptotic cells and up-regulated protein expression of caspase-1, caspase-8, caspase-3, and p53, leading to apoptosis. Taken together, these data demonstrate that activation of the HSR and apoptotic pathways by Cd exposure is involved in Cd-elicited cerebral damage in the chicken.

Graphical Abstract

Synopsis for the graphical abstract

Cadmium (Cd)-induced neuronal damage triggers the heat shock response (HSR) by activating heat shock transcription factors (HSFs) and subsequent induction of major heat shock proteins (notably, HSP60, HSP70, and HSP90). Moreover, Cd exposure activates caspase-1, caspase-8, caspase-3, and p53 protein, thereby resulting in neuronal apoptosis in the chicken brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdeen A, Abou-Zaid OA, Abdel-Maksoud HA, Aboubakr M, Abdelkader A, Abdelnaby A, Abo-Ahmed AI, El-Mleeh A, Mostafa O, Abdel-Daim M, Aleya L (2019) Cadmium overload modulates piroxicam-regulated oxidative damage and apoptotic pathways. Environ Sci Pollut Res Int 26:25167–25177

    Article  CAS  Google Scholar 

  • Akerfelt M, Trouillet D, Mezger V, Sistonen L (2007) Heat shock factors at a crossroad between stress and development. Ann N Y Acad Sci 1113:15–27

    Article  CAS  Google Scholar 

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  CAS  Google Scholar 

  • Al Olayan EM, Aloufi AS, AlAmri OD, El-Habit OH, Abdel Moneim AE (2020) Protocatechuic acid mitigates cadmium-induced neurotoxicity in rats: role of oxidative stress, inflammation and apoptosis. Sci Total Environ 723:137969

    Article  CAS  Google Scholar 

  • Albokhadaim IF, Althnaian TA, El-Bahr SM (2019) Gene expression of heat shoc kproteins/factors (HSP60, HSP70, HSP90, HSF-1, HSF-3) and antioxidant enzyme activities in heat stressed broilers treated with vitamin C. Pol J Vet Sci 22:565–572

    CAS  Google Scholar 

  • Ali S, Awan Z, Mumtaz S, Shakir HA, Ahmad F, Ulhaq M, Tahir HM, Awan MS, Sharif S, Irfan M, Khan MA (2020) Cardiac toxicity of heavy metals (cadmium and mercury) and pharmacological intervention by vitamin C in rabbits. Environ Sci Pollut Res Int 27:29266–29279

    Article  CAS  Google Scholar 

  • Alnahdi HS, Sharaf IA (2019) Possible prophylactic effect of omega-3 fatty acids on cadmium-induced neurotoxicity in rats’ brains. Environ Sci Pollut Res Int 26:31254–31262

    Article  CAS  Google Scholar 

  • Al-Zghoul MB, Dalab AE, Yahya IE, Althnaian TA, Al-Ramadan SY, Ali AM, Albokhadaim IF, El-Bahr SM, Al Busadah KA, Hannon KM (2015) Thermal manipulation during broiler chicken embryogenesis: Effect on mRNA expressions of Hsp108, Hsp70, Hsp47 and Hsf-3 during subsequent post-hatch thermal challenge. Res Vet Sci 103:211–217

    Article  CAS  Google Scholar 

  • Balakrishnan KN, Ramiah SK, Zulkifli I (2023) Heat shock protein response to stress in poultry: a review. Animals (basel) 13:317

    Article  Google Scholar 

  • Batulan Z, Taylor DM, Aarons RJ, Minotti S, Doroudchi MM, Nalbantoglu J, Durham HD (2006) Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis. Neurobiol Dis 24:213–225

    Article  CAS  Google Scholar 

  • Behdarvandy M, Karimian M, Atlasi MA, Azami Tameh A (2020) Heat shock protein 27 as a neuroprotective biomarker and a suitable target for stem cell therapy and pharmacotherapy in ischemic stroke. Cell Biol Int 44:356–367

    Article  CAS  Google Scholar 

  • Ben P, Zhang Z, Xuan C, Sun S, Shen L, Gao Y, Cao X, Zhou Y, Lan L, Yin Z, Luo L (2015) Protective effect of L-theanine on cadmium-induced apoptosis in PC12 cells by inhibiting the mitochondria-mediated pathway. Neurochem Res 40:1661–1670

    Article  CAS  Google Scholar 

  • Bi SS, Jin HT, Talukder M, Ge J, Zhang C, Lv MW, Yaqoob Ismail MA, Li JL (2021) The protective effect of nnano-selenium against cadmium-induced cerebellar injury via the heat shock protein pathway in chicken. Food Chem Toxicol : an International Journal Published for the British Industrial Biological Research Association 154:112332

    Article  CAS  Google Scholar 

  • Branca JJV, Morucci G, Maresca M, Tenci B, Cascella R, Paternostro F, Ghelardini C, Gulisano M, Di Cesare ML, Pacini A (2018) Selenium and zinc: Two key players against cadmium-induced neuronal toxicity. Toxicol Vitro : an International Journal Published in Association with BIBRA 48:159–169

    Article  CAS  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  Google Scholar 

  • Cao F, Zhou T, Simpson D, Zhou Y, Boyer J, Chen B, Jin T, Cordeiro-Stone M, Kaufmann W (2007) p53-Dependent but ATM-independent inhibition of DNA synthesis and G2 arrest in cadmium-treated human fibroblasts. Toxicol Appl Pharmacol 218:174–185

    Article  CAS  Google Scholar 

  • Cao H, Gao F, Xia B, Zhang M, Liao Y, Yang Z, Hu G, Zhang C (2016) Alterations in trace element levels and mRNA expression of Hsps and inflammatory cytokines in livers of duck exposed to molybdenum or/and cadmium. Ecotoxicol Environ Saf 125:93–101

    Article  CAS  Google Scholar 

  • Cedraz H, Gromboni JGG, Garcia AAPJ, Farias Filho RV, Souza TM, Oliveira ER, Oliveira EB, Nascimento CSD, Meneghetti C, Wenceslau AA (2017) Heat stress induces expression of HSP genes in genetically divergent chickens. PLoS One 12:e0186083

    Article  Google Scholar 

  • Chen J, Pan T, Wan N, Sun Z, Zhang Z, Li S (2017) Cadmium-induced endoplasmic reticulum stress in chicken neutrophils is alleviated by selenium. J Inorg Biochem 170:169–177

    Article  CAS  Google Scholar 

  • Chen S, Liu G, Long M, Zou H, Cui H (2018) Alpha lipoic acid attenuates cadmium-induced nephrotoxicity via the mitochondrial apoptotic pathways in rat. J Inorg Biochem 184:19–26

    Article  CAS  Google Scholar 

  • Chunhabundit R (2016) Cadmium exposure and potential health risk from foods in contaminated area, Thailand. Toxicol Res 32:65–72

    Article  CAS  Google Scholar 

  • Cong Y, Chi Q, Teng X, Li S (2019) The protection of selenium against cadmium-induced mitochondrial damage via the cytochrome P450 in the livers of chicken. Biol Trace Elem Res 190:484–492

    Article  CAS  Google Scholar 

  • D’Souza SM, Brown IR (1998) Constitutive expression of heat shock proteins Hsp90, Hsc70, Hsp70 and Hsp60 in neural and non-neural tissues of the rat during postnatal development. Cell Stress Chaperones 3:188–199

    Article  Google Scholar 

  • D’Mello SR, Kuan CY, Flavell RA, Rakic P (2000) Caspase-3 is required for apoptosis-associated DNA fragmentation but not for cell death in neurons deprived of potassium. J Neurosci Res 59:24–31

    Article  CAS  Google Scholar 

  • Dukay B, Csoboz B, Toth ME (2019) Heat-Shock Proteins in Neuroinflammation. Front Pharmacol 10:920

    Article  CAS  Google Scholar 

  • Dutcher SA, Underwood BD, Walker PD, Diaz FG, Michael DB (1998) Patterns of heat-shock protein 70 biosynthesis following human traumatic brain injury. J Neurotrauma 15:411–420

    Article  CAS  Google Scholar 

  • El-Kott AF, Abd-Lateif AM, Khalifa HS, Morsy K, Ibrahim EH, Bin-Jumah M, Abdel-Daim MM, Aleya L (2020) Kaempferol protects against cadmium chloride-induced hippocampal damage and memory deficits by activation of silent information regulator 1 and inhibition of poly (ADP-Ribose) polymerase-1. Sci Total Environ 728:138832

    Article  CAS  Google Scholar 

  • Fan TJ, Han LH, Cong RS, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (shanghai) 37:719–727

    Article  CAS  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  Google Scholar 

  • Franklin TB, Krueger-Naug AM, Clarke DB, Arrigo AP, Currie RW (2005) The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hyperthermia 21:379–392

    Article  CAS  Google Scholar 

  • Friedman MJ, Li S, Li XJ (2009) Activation of gene transcription by heat shock protein 27 may contribute to its neuronal protection. J Biol Chem 284:27944–27951

    Article  CAS  Google Scholar 

  • Fujimoto M, Nakai A (2010) The heat shock factor family and adaptation to proteotoxic stress. FEBS J 277:4112–4125

    Article  CAS  Google Scholar 

  • Gass P, Schroder H, Prior P, Kiessling M (1994) Constitutive expression of heat shock protein 90 (HSP90) in neurons of the rat brain. Neurosci Lett 182:188–192

    Article  CAS  Google Scholar 

  • Ge J, Huang Y, Lv M, Zhang C, Talukder M, Li J, Li J (2022) Cadmium induced Fak-mediated anoikis activation in kidney via nuclear receptors (AHR/CAR/PXR)-mediated xenobiotic detoxification pathway. J Inorg Biochem 227:111682

    Article  CAS  Google Scholar 

  • Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17:3782

    Article  CAS  Google Scholar 

  • Giri SS, Sen SS, Jun JW, Sukumaran V, Park SC (2016) Immunotoxicological effects of cadmium on Labeo rohita, with emphasis on the expression of HSP genes. Fish Shellfish Immunol 54:164–171

    Article  CAS  Google Scholar 

  • Hall L, Martinus RD (2013) Hyperglycaemia and oxidative stress upregulate HSP60 & HSP70 expression in HeLa cells. Springerplus 2:431

    Article  Google Scholar 

  • Hao R, Song X, Li F, Tan X, Sun-Waterhouse D, Li D (2020) Caffeic acid phenethyl ester reversed cadmium-induced cell death in hippocampus and cortex and subsequent cognitive disorders in mice: Involvements of AMPK/SIRT1 pathway and amyloid-tau-neuroinflammation axis. Food Chem Toxicol 144:111636

    Article  CAS  Google Scholar 

  • Huang M, Su L, Yang L, Zhu L, Liu Z, Duan R (2017) Effect of exogenous TGF-beta1 on the cadmium-induced nephrotoxicity by inhibiting apoptosis of proximal tubular cells through PI3K-AKT-mTOR signaling pathway. Chem Biol Interact 269:25–32

    Article  CAS  Google Scholar 

  • Kang D, Shim K (2021) Early heat exposure effect on the heat shock proteins in broilers under acute heat stress. Poult Sci 100:100964

    Article  Google Scholar 

  • Kawazoe Y, Tanabe M, Sasai N, Nagata K, Nakai A (1999) HSF3 is a major heat shock responsive factor duringchicken embryonic development. Eur J Biochem 265:688–697

    Article  CAS  Google Scholar 

  • Khan A, Ikram M, Muhammad T, Park J, Kim MO (2019) Caffeine modulates cadmium-induced oxidative stress, neuroinflammation, and cognitive impairments by regulating Nrf-2/HO-1 in vivo and in vitro. J Clin Med 8:680

  • Lee JY, Tokumoto M, Hattori Y, Fujiwara Y, Shimada A, Satoh M (2016) Different regulation of p53 expression by cadmium exposure in kidney, liver, intestine, vasculature, and brain astrocytes. Toxicol Res 32:73–80

    Article  CAS  Google Scholar 

  • Li JL, Jiang CY, Li S, Xu SW (2013) Cadmium induced hepatotoxicity in chickens (Gallus domesticus) and ameliorative effect by selenium. Ecotoxicol Environ Saf 96:103–109

    Article  CAS  Google Scholar 

  • Li T, Yu H, Song Y, Zhang R, Ge M (2019) Protective effects of Ganoderma triterpenoids on cadmium-induced oxidative stress and inflammatory injury in chicken livers. J Trace Elem Med Biol 52:118–125

    Article  CAS  Google Scholar 

  • Liang Y, Zeng T, Tian J, Yan J, Lan Z, Chen J, Xin X, Lei B, Cai Z (2021) Long-term environmental cadmium exposure induced serum metabolic changes related to renal and liver dysfunctions in a female cohort from Southwest China. Sci Total Environ 798:149379

    Article  CAS  Google Scholar 

  • Lin J, Zhao HS, Qin L, Li XN, Zhang C, Xia J, Li JL (2018) Atrazine triggers mitochondrial dysfunction and oxidative stress in quail (Coturnix C. coturnix) cerebrum via activating xenobiotic-sensing nuclear receptors and modulating cytochrome P450 systems. J Agric Food Chem 66:6402–6413

    Article  CAS  Google Scholar 

  • Liu L, Liu Y, Cheng X, Qiao X (2021) The alleviative effects of quercetin on cadmium-induced necroptosis via inhibition ROS/iNOS/NF-kappaB pathway in the chicken brain. Biol Trace Elem Res 199:1584–1594

    Article  CAS  Google Scholar 

  • Loones MT, Chang Y, Morange M (2000) The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggests a role in neuronal and non-neuronal differentiation. Cell Stress Chaperones 5:291–305

    Article  CAS  Google Scholar 

  • Mitra T, Mahanty A, Ganguly S, Purohit GK, Mohanty S, Parida PK, Behera PR, Raman RK, Mohanty BP (2018) Expression patterns of heat shock protein genes in Rita rita from natural riverine habitat as biomarker response against environmental pollution. Chemosphere 211:535–546

    Article  CAS  Google Scholar 

  • Musial K, Zwolinska D (2012) Hsp27 as a marker of cell damage in children on chronic dialysis. Cell Stress Chaperones 17:675–682

    Article  CAS  Google Scholar 

  • Nakai A, Morimoto RI (1993) Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol 13:1983–1997

    CAS  Google Scholar 

  • Nakai A, Kawazoe Y, Tanabe M, Nagata K, Morimoto RI (1995) The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Mol Cell Biol 15:5268–5278

    Article  CAS  Google Scholar 

  • Nazimabashir MV, Miltonprabu S (2015) Cadmium induced cardiac oxidative stress in rats and its attenuation by GSP through the activation of Nrf2 signaling pathway. Chem Biol Interact 242:179–193

    Article  CAS  Google Scholar 

  • Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131

    Article  CAS  Google Scholar 

  • Quraishe S, Asuni A, Boelens WC, O’Connor V, Wyttenbach A (2008) Expression of the small heat shock protein family in the mouse CNS: differential anatomical and biochemical compartmentalization. Neuroscience 153:483–491

    Article  CAS  Google Scholar 

  • Rajdev S, Sharp FR (2000) Stress proteins as molecular markers of neurotoxicity. Toxicol Pathol 28:105–112

    Article  CAS  Google Scholar 

  • Rogalska J, Pilat-Marcinkiewicz B, Brzoska MM (2011) Protective effect of zinc against cadmium hepatotoxicity depends on this bioelement intake and level of cadmium exposure: a study in a rat model. Chem Biol Interact 193:191–203

    Article  CAS  Google Scholar 

  • Saedi S, Jafarzadeh Shirazi MR, Niazi A, Tahmasebi A, Ebrahimie E (2021) Prepubertal exposure to high dose of cadmium induces hypothalamic injury through transcriptome profiling alteration and neuronal degeneration in female rats. Chem Biol Interact 337:109379

    Article  CAS  Google Scholar 

  • Sanjeev S, Bidanchi RM, Murthy MK, Gurusubramanian G, Roy VK (2019) Influence of ferulic acid consumption in ameliorating the cadmium-induced liver and renal oxidative damage in rats. Environ Sci Pollut Res Int 26:20631–20653

    Article  CAS  Google Scholar 

  • Shabtay A, Arad Z (2006) Reciprocal activation of HSF1 and HSF3 in brain and blood tissues: is redundancy developmentally related? Am J Physiol Regul Integr Comp Physiol 291:R566–R572

    Article  CAS  Google Scholar 

  • Shinkai Y, Masuda A, Akiyama M, Xian M, Kumagai Y (2017) Cadmium-mediated activation of the HSP90/HSF1 pathway regulated by reactive persulfides/polysulfides. Toxicol Sci 156:412–421

    CAS  Google Scholar 

  • Shinkawa T, Tan K, Fujimoto M, Hayashida N, Yamamoto K, Takaki E, Takii R, Prakasam R, Inouye S, Mezger V, Nakai A (2011) Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Mol Biol Cell 22:3571–3583

    Article  CAS  Google Scholar 

  • Song Y, Zhang R, Wang H, Yan Y, Ming G (2018) Protective effect of Agaricus blazei polysaccharide against cadmium-induced damage on the testis of chicken. Biol Trace Elem Res 184:491–500

    Article  CAS  Google Scholar 

  • Taghavizadeh Yazdi ME, Amiri MS, Nourbakhsh F, Rahnama M, Forouzanfar F, Mousavi SH (2021) Bio-indicators in cadmium toxicity: Role of HSP27 and HSP70. Environ Sci Pollut Res Int 28:26359–26379

    Article  CAS  Google Scholar 

  • Talukder M, Bi SS, Jin HT, Ge J, Zhang C, Lv MW, Li JL (2021) Cadmium induced cerebral toxicity via modulating MTF1-MTs regulatory axis. Environ Pollut 285:117083

    Article  CAS  Google Scholar 

  • Tamas MJ, Fauvet B, Christen P, Goloubinoff P (2018) Misfolding and aggregation of nascent proteins: a novel mode of toxic cadmium action in vivo. Curr Genet 64:177–181

    Article  CAS  Google Scholar 

  • Tan S, Chi Q, Liu T, Sun Z, Min Y, Zhang Z, Li S (2017) Alleviation mechanisms of selenium on cadmium-spiked neutrophil injury to chicken. Biol Trace Elem Res 178:301–309

    Article  CAS  Google Scholar 

  • Tanabe M, Nakai A, Kawazoe Y, Nagata K (1997) Different thresholds in the responses of two heat shock transcription factors, HSF1 and HSF3. J Biol Chem 272:15389–15395

    Article  CAS  Google Scholar 

  • Tanabe M, Kawazoe Y, Takeda S, Morimoto RI, Nagata K, Nakai A (1998) Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J 17:1750–1758

    Article  CAS  Google Scholar 

  • Tang KK, Liu XY, Wang ZY, Qu KC, Fan RF (2019) Trehalose alleviates cadmium-induced brain damage by ameliorating oxidative stress, autophagy inhibition, and apoptosis. Metallomics 11:2043–2051

    Article  CAS  Google Scholar 

  • Tonkin RS, Bowles C, Perera CJ, Keating BA, Makker PGS, Duffy SS, Lees JG, Tran C, Don AS, Fath T, Liu L, O’Carroll SJ, Nicholson LFB, Green CR, Gorrie C, Moalem-Taylor G (2018) Attenuation of mechanical pain hypersensitivity by treatment with Peptide5, a connexin-43 mimetic peptide, involves inhibition of NLRP3 inflammasome in nerve-injured mice. Exp Neurol 300:1–12

    Article  CAS  Google Scholar 

  • Toth ME, Gonda S, Vigh L, Santha M (2010) Neuroprotective effect of small heat shock protein, Hsp27, after acute and chronic alcohol administration. Cell Stress Chaperones 15:807–817

    Article  CAS  Google Scholar 

  • Turner A (2019) Cadmium pigments in consumer products and their health risks. Sci Total Environ 657:1409–1418

    Article  CAS  Google Scholar 

  • Unsal C, Kanter M, Aktas C, Erboga M (2015) Role of quercetin in cadmium-induced oxidative stress, neuronal damage, and apoptosis in rats. Toxicol Ind Health 31:1106–1115

    Article  CAS  Google Scholar 

  • van der Weerd L, Tariq Akbar M, Aron Badin R, Valentim LM, Thomas DL, Wells DJ, Latchman DS, Gadian DG, Lythgoe MF, de Belleroche JS (2010) Overexpression of heat shock protein 27 reduces cortical damage after cerebral ischemia. J Cereb Blood Flow Metab 30:849–856

    Article  Google Scholar 

  • Verma P, Pfister JA, Mallick S, D’Mello SR (2014) HSF1 protects neurons through a novel trimerization- and HSP-independent mechanism. J Neurosci 34:1599–1612

    Article  CAS  Google Scholar 

  • Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxid Med Cell Longev 2013:898034

    Article  Google Scholar 

  • Wang YJ, Yan J, Zou XL, Guo KJ, Zhao Y, Meng CY, Yin F, Guo L (2017) Bone marrow mesenchymal stem cells repair cadmium-induced rat testis injury by inhibiting mitochondrial apoptosis. Chem Biol Interact 271:39–47

    Article  CAS  Google Scholar 

  • Wang H, Abel GM, Storm DR, Xia Z (2019) Cadmium exposure impairs adult hippocampal neurogenesis. Toxicol Sci 171:501–514

    Article  CAS  Google Scholar 

  • Wang Y, Liu J, Chen R, Qi M, Tao D, Xu S (2020) The antagonistic effects of selenium yeast (SeY) on cadmium-induced inflammatory factors and the heat shock protein expression levels in chicken livers. Biol Trace Elem Res 198:260–268

    Article  Google Scholar 

  • Wang J, Zhu H, Lin S, Wang K, Wang H, Liu Z (2021) Protective effect of naringenin against cadmium-induced testicular toxicity in male SD rats. J Inorg Biochem 214:111310

    Article  CAS  Google Scholar 

  • Wang X, Hu R, Wang C, Wei Z, Pi S, Li Y, Li G, Yang F, Zhang C (2022) Nrf2 axis and endoplasmic reticulum stress mediated autophagy activation is involved in molybdenum and cadmium co-induced hepatotoxicity in ducks. J Inorg Biochem 229:111730

    Article  CAS  Google Scholar 

  • Wei Z, Nie G, Yang F, Pi S, Wang C, Cao H, Guo X, Liu P, Li G, Hu G, Zhang C (2020) Inhibition of ROS/NLRP3/Caspase-1 mediated pyroptosis attenuates cadmium-induced apoptosis in duck renal tubular epithelial cells. Environ Pollut 273:115919

    Article  Google Scholar 

  • Wen S, Wang L, Zhang W, Xu M, Song R, Zou H, Gu J, Bian J, Yuan Y, Liu Z (2021a) Induction of mitochondrial apoptosis pathway mediated through caspase-8 and c-Jun N-terminal kinase by cadmium-activated Fas in rat cortical neurons. Metallomics 13:mfab042

    Article  Google Scholar 

  • Wen S, Wang L, Zou H, Gu J, Song R, Bian J, Yuan Y, Liu Z (2021b) Puerarin attenuates cadmium-induced neuronal injury via stimulating cadmium excretion, inhibiting oxidative stress and apoptosis. Biomolecules 11:978

    Article  CAS  Google Scholar 

  • Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18:5943–5952

    Article  CAS  Google Scholar 

  • Xie J, Tang L, Lu L, Zhang L, Xi L, Liu HC, Odle J, Luo X (2014) Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus). PLoS One 9:e102204

    Article  Google Scholar 

  • Yang XF, Fan GY, Liu DY, Zhang HT, Xu ZY, Ge YM, Wang ZL (2015) Effect of cadmium exposure on the histopathology of cerebral cortex in juvenile mice. Biol Trace Elem Res 165:167–172

    Article  CAS  Google Scholar 

  • Yang M, Chen W, Zhang Y, Yang R, Wang Y, Yuan H (2018) EphrinB/EphB signaling contributes to spinal nociceptive processing via calpain-1 and caspase-3. Mol Med Rep 18:268–278

    CAS  Google Scholar 

  • Yu Y, Hu LL, Liu L, Yu LL, Li JP, Rao JA, Zhu LJ, Bao HH, Cheng XS (2021) Hsp22 ameliorates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidative stress, and apoptosis. Bioengineered 12:12544–12554

    Article  CAS  Google Scholar 

  • Yuan Y, Jiang C, Hu F, Wang Q, Zhang K, Wang Y, Gu J, Liu X, Bian J, Liu Z (2015) The role of mitogen-activated protein kinase in cadmium-induced primary rat cerebral cortical neurons apoptosis via a mitochondrial apoptotic pathway. J Trace Elem Med Biol 29:275–283

    Article  CAS  Google Scholar 

  • Yuan Y, Zhang Y, Zhao S, Chen J, Yang J, Wang T, Zou H, Wang Y, Gu J, Liu X, Bian J, Liu Z (2018) Cadmium-induced apoptosis in neuronal cells is mediated by Fas/FasL-mediated mitochondrial apoptotic signaling pathway. Sci Rep 8:8837

    Article  Google Scholar 

  • Yuan Y, Yang J, Chen J, Zhao S, Wang T, Zou H, Wang Y, Gu J, Liu X, Bian J, Liu Z (2019) Alpha-lipoic acid protects against cadmium-induced neuronal injury by inhibiting the endoplasmic reticulum stress eIF2alpha-ATF4 pathway in rat cortical neurons in vitro and in vivo. Toxicology 414:1–13

    Article  CAS  Google Scholar 

  • Zhang R, Zhu Y, Dong X, Liu B, Zhang N, Wang X, Liu L, Xu C, Huang S, Chen L (2017) Celastrol Attenuates Cadmium-Induced Neuronal Apoptosis via Inhibiting Ca(2+) -CaMKII-Dependent Akt/mTOR Pathway. J Cell Physiol 232:2145–2157

    Article  CAS  Google Scholar 

  • Zhang R, Liu Y, Xing L, Zhao N, Zheng Q, Li J, Bao J (2018) The protective role of selenium against cadmium-induced hepatotoxicity in laying hens: Expression of Hsps and inflammation-related genes and modulation of elements homeostasis. Ecotoxicol Environ Saf 159:205–212

    Article  CAS  Google Scholar 

  • Zhang T, Gao X, Luo X, Li L, Ma M, Zhu Y, Zhao L, Li R (2019) The effects of long-term exposure to low doses of cadmium on the health of the next generation of mice. Chem Biol Interact 312:108792

    Article  CAS  Google Scholar 

  • Zhao P, Guo Y, Zhang W, Chai H, Xing H, Xing M (2017) Neurotoxicity induced by arsenic in Gallus Gallus: Regulation of oxidative stress and heat shock protein response. Chemosphere 166:238–245

    Article  CAS  Google Scholar 

  • Zhao Y, Fan JH, Luo Y, Talukder M, Li XN, Zuo YZ, Li JL (2019) Di-(2-ethylhexyl) phthalate (DEHP)-induced hepatotoxicity in quail (Coturnix japonica) via suppression of the heat shock response. Chemosphere 228:685–693

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 32172932), the Key Program of the Natural Science Foundation of Heilongjiang Province of China (No. ZD2021C003), the China Agriculture Research System of MOF and MARA (No. CARS-35), Distinguished Professor of the Longjiang Scholars Support Project (No. T201908), and the Heilongjiang Touyan Innovation Team Program.

Author information

Authors and Affiliations

Authors

Contributions

Milton Talukder: conceptualization, methodology, investigation, formal analysis, writing—original draft, writing—review and editing. Shao-Shuai Bi: methodology, formal analysis, writing—review and editing. Mei-Wei Lv: investigation, formal analysis. Jing Ge: formal analysis, writing—review and editing. Cong Zhang: writing—review and editing. Jin-Long Li: conceptualization, funding acquisition, supervision, writing—review and editing.

Corresponding author

Correspondence to Jin-Long Li.

Ethics declarations

Ethics approval

Animal experiments were performed in accordance with the guidelines for the care and use of laboratory animals and were approved by the Animal Care and Use Committee of Northeast Agricultural University, China (approval number: NEAUEC20190314).

Consent to participate

Not applicable.

Consent for publication

All authors have approved the final version of the manuscript for publication.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukder, M., Bi, SS., Lv, MW. et al. Involvement of the heat shock response (HSR) regulatory pathway in cadmium-elicited cerebral damage. Environ Sci Pollut Res 30, 106648–106659 (2023). https://doi.org/10.1007/s11356-023-29880-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-29880-0

Keywords

Navigation