Skip to main content
Log in

Lanthanum nanoparticle (La2O3)–loaded adsorbents for removal of hexavalent chromium: a kinetics, isotherm, and thermodynamic study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nanocomposite adsorbents for wastewater treatment gained popularity in recent times. In the present study, nanoparticles prepared from lanthanum have been loaded on the powdered form of aquatic plants Salvinia molesta (S. molesta) and Typha latifolia (T. latifolia). These new adsorbents were NPS (nanoparticle-loaded S. molesta) and NPT (nanoparticle-loaded T. latifolia). The batch study was carried out to assess the effect of several factors on the adsorption of Cr(VI) by novel adsorbents NPS and NPT. XRD, SEM, FTIR, EDX, and Zeta potential were used for the characterization of nanoparticles formed and novel adsorbents. The maximal adsorption was noticed by both adsorbents at pH 1, 20 ppm of initial metal concentration, and 1 h of contact period with 150 rpm at 25 ℃. The adsorbent dose of 60 mg and 80 mg was observed as the equilibrium dose for NPS and NPT, respectively. The maximum adsorption capacity observed was 27.18 mg/g for NPS and 19.85 mg/g for NPT. Freundlich isotherm was better fitted for both adsorbents. Pseudo-second-order kinetics depicts the better mechanism of adsorption with R2 = 0.9995 and 0.9982 for NPS and NPT, respectively. Thermodynamic parameters show that the adsorption process was exothermic and spontaneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All the data related to manuscript provided by corresponding author, upon request.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

Asha Singh and Dinesh Arora: conceptualization, writing—original draft, editing. Renu Bala and Anil Khokhar: editing and reviewing. Sunil Kumar: supervision, reviewing, editing

Corresponding author

Correspondence to Sunil Kumar.

Ethics declarations

Compliance with ethical standards

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Ioannis A. Katsoyiannis

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Arora, D., Bala, R. et al. Lanthanum nanoparticle (La2O3)–loaded adsorbents for removal of hexavalent chromium: a kinetics, isotherm, and thermodynamic study. Environ Sci Pollut Res 30, 105415–105428 (2023). https://doi.org/10.1007/s11356-023-29834-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-29834-6

Keywords

Navigation