Skip to main content

Advertisement

Log in

Phytotoxic effects of chemically synthesized copper oxide nanoparticles induce physiological, biochemical, and ultrastructural changes in Cucumis melo

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nanotechnology has achieved great attention due to its impressive performance especially engineered nanoparticles (ENPs). Copper-based nanoparticles offer favorable development in the fabrication of agrochemicals including fertilizers and pesticides in the field of agriculture. However, their toxic impact on melon plants (Cucumis melo) still needs to be investigated. Therefore, the aim of the current work was performed to focus on the toxic impact of Cu oxide nanoparticles (CuONPs) in hydroponically grown Cucumis melo. Our results demonstrated that CuONPs with 75, 150, and 225 mg/L significantly (P<0.005) suppressed the growth rate and badly affect physiological and biochemical activities in melon seedlings. Also, results revealed remarkable phenotypical changes besides significantly reduced fresh biomass and decreased levels of total chlorophyll contents in a dose-dependent manner. Atomic absorption spectroscopy (ASS) analysis exhibited that C. melo treated with CuONPs accumulates NPs in the shoot. Moreover, exposure to higher CuONPs (75–225mg/L) significantly increased the reactive oxygen species (ROS) accumulation, malondialdehyde (MDA), and hydrogen peroxide (H2O2) level in the shoot and induced toxicity in melon root with an increase in electrolyte leakage. Furthermore, antioxidant enzyme peroxidase (POD) and superoxide dismutase (SOD) activity in the shoot significantly increased under exposure to higher CuONPs. Exposure to higher concentrations of CuONPs (225 mg/L) significantly deformed the stomatal aperture. Furthermore, reducing the number and abnormal size of palisade mesophyll and spongy mesophyll cells were investigated especially at high doses of CuONPs. Overall, our current work demonstrates that CuONPs of 10–40 nm size provide direct evidence for a toxic effect in C. melo seedlings. Our findings were expected to inspire the safe production of NPs and agrifood security. Thus, CuONPs prepared from toxic route and its bioaccumulation into our food chain through crop plants possess a serious threat to the ecological system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article

Abbreviations

CuONPs:

Cu oxide nanoparticles

ENPs:

engineered nanoparticles

ASS:

atomic absorption spectroscopy

ROS:

reactive oxygen species

MDA:

malondialdehyde

H2O2 :

hydrogen peroxide

POD:

peroxidase

SOD:

superoxide dismutase

EL:

electrolyte leakage

NaOH:

sodium hydroxide

SEM:

scanning electron microscope

TEM:

transmission electron microscope

XRD:

X-ray diffraction

References

  • Adeel M, Shakoor N, Shafiq M, Pavlicek A, Part F, Zafiu C, Raza A, Ahmad MA, Jilani G, White JC (2021) A critical review of the environmental impacts of manufactured nano-objects on earthworm species. Environ Pollut 290:118041

    CAS  Google Scholar 

  • Ali I, Jan M, Wakeel A, Azizullah A, Liu B, Islam F, Ali A, Daud M, Liu Y, Gan Y (2017) Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thialiana subjected to bisphenol A exposure. Ecotoxicol Environ Saf 144:62–71

    CAS  Google Scholar 

  • Apodaca SA, Tan W, Dominguez OE, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2017) Physiological and biochemical effects of nanoparticulate copper, bulk copper, copper chloride, and kinetin in kidney bean (Phaseolus vulgaris) plants. Sci Total Environ 599:2085–2094

    Google Scholar 

  • Arif N, Yadav V, Singh S, Tripathi DK, Dubey NK, Chauhan DK, Giorgetti L (2018) Interaction of copper oxide nanoparticles with plants: uptake, accumulation, and toxicity, Nanomaterials in Plants, Algae, and Microorganisms. Elsevier, pp 297–310

    Google Scholar 

  • Arya A, Mishra V, Chundawat TS (2019) Green synthesis of silver nanoparticles from green algae (Botryococcus braunii) and its catalytic behavior for the synthesis of benzimidazoles. Chemical Data Collections 20:100190

    CAS  Google Scholar 

  • Ashraf H, Anjum T, Riaz S, Ahmad IS, Irudayaraj J, Javed S, Qaiser U, Naseem S (2021) Inhibition mechanism of green-synthesized copper oxide nanoparticles from Cassia fistula towards Fusarium oxysporum by boosting growth and defense response in tomatoes. Environmental Science: Nano 8(6):1729–1748

    CAS  Google Scholar 

  • Azhar W, Khan AR, Muhammad N, Liu B, Song G, Hussain A, Yasin MU, Khan S, Munir R, Gan Y (2020) Ethylene mediates CuO NP-induced ultrastructural changes and oxidative stress in Arabidopsis thaliana leaves. Environmental Science: Nano 7:938–953

    CAS  Google Scholar 

  • Bowler C, Mv M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43:83–116

    CAS  Google Scholar 

  • Choudhury S, Panda SK (2005) Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut 167:73–90

    CAS  Google Scholar 

  • Cui D, Zhang P, Ma Y, He X, Li Y, Zhang J, Zhao Y, Zhang Z (2014) Effect of cerium oxide nanoparticles on asparagus lettuce cultured in an agar medium. Environmental Science: Nano 1:459–465

    CAS  Google Scholar 

  • Da Costa M, Sharma P (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119

    Google Scholar 

  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    CAS  Google Scholar 

  • Dobrikova AG, Apostolova EL, Hanć A, Yotsova E, Borisova P, Sperdouli I, Adamakis I-DS, Moustakas M (2021) Cadmium toxicity in Salvia sclarea L.: an integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. Ecotoxicol Environ Saf 209:111851

    CAS  Google Scholar 

  • Ebbs SD, Bradfield SJ, Kumar P, White JC, Musante C, Ma X (2016) Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environmental Science: Nano 3:114–126

    CAS  Google Scholar 

  • El-Saadony MT, Abd El-Hack ME, Taha AE, Fouda MM, Ajarem JS, N. Maodaa S, Allam AA, Elshaer N (2020) Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Tribolium castaneum. Nanomaterials 10:587

    CAS  Google Scholar 

  • Feigl G, Kumar D, Lehotai N, Tugyi N, Molnár Á, Ördög A, Szepesi Á, Gémes K, Laskay G, Erdei L (2013) Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicol Environ Saf 94:179–189

    CAS  Google Scholar 

  • Handy RD, Von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    CAS  Google Scholar 

  • Hayat K, Zhou Y, Menhas S, Bundschuh J, Hayat S, Ullah A, Wang J, Chen X, Zhang D, Zhou P (2020) Pennisetum giganteum: an emerging salt accumulating/tolerant non-conventional crop for sustainable saline agriculture and simultaneous phytoremediation. Environ Pollut 265:114876

    CAS  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7:1415–1423

    CAS  Google Scholar 

  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 17:177–185

    CAS  Google Scholar 

  • Jacobs R, Meesters JA, Ter Braak CJ, van de Meent D, van der Voet H (2016) Combining exposure and effect modeling into an integrated probabilistic environmental risk assessment for nanoparticles. Environ Toxicol Chem 35:2958–2967

    CAS  Google Scholar 

  • Jana NR, Wang ZL, Sau TK, Pal T (2000) Seed-mediated growth method to prepare cubic copper nanoparticles. CURRENT SCIENCE-BANGALORE 79:1367–1369

    CAS  Google Scholar 

  • Khan A, Rashid A, Younas R, Chong R (2016) A chemical reduction approach to the synthesis of copper nanoparticles. International Nano Letters 6:21–26

    CAS  Google Scholar 

  • Khan AR, Wakeel A, Muhammad N, Liu B, Wu M, Liu Y, Ali I, Zaidi SHR, Azhar W, Song G (2019) Involvement of ethylene signaling in zinc oxide nanoparticle-mediated biochemical changes in Arabidopsis thaliana leaves. Environmental Science: Nano 6:341–355

    CAS  Google Scholar 

  • Kim S, Sin H, Lee S, Lee I (2013) Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. J Microbiol Biotechnol 23:1279–1286

    CAS  Google Scholar 

  • Kováčik J, Grúz J, Klejdus B, Štork F, Marchiosi R, Ferrarese-Filho O (2010) Lignification and related parameters in copper-exposed Matricaria chamomilla roots: role of H2O2 and NO in this process. Plant Sci 179:383–389

    Google Scholar 

  • Le Van N, Ma C, Shang J, Rui Y, Liu S, Xing B (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670

    Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry: An International Journal 29:669–675

    CAS  Google Scholar 

  • Lee Y-J, Kim K, Shin I-S, Shin KS (2020) Antioxidative metallic copper nanoparticles prepared by modified polyol method and their catalytic activities. J Nanopart Res 22:1–8

    CAS  Google Scholar 

  • Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682

    CAS  Google Scholar 

  • Lin C-C, Chen L-M, Liu Z-H (2005) Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci 168:855–861

    CAS  Google Scholar 

  • Liu J, Dhungana B, Cobb GP (2018) Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants. Environ Toxicol Chem 37:11–20

    CAS  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles–a review. Environ Pollut 172:76–85

    CAS  Google Scholar 

  • Mosa KA, El-Naggar M, Ramamoorthy K, Alawadhi H, Elnaggar A, Wartanian S, Ibrahim E, Hani H (2018) Copper nanoparticles induced genotoxicty, oxidative stress, and changes in superoxide dismutase (SOD) gene expression in cucumber (Cucumis sativus) plants. Front Plant Sci 9:872

    Google Scholar 

  • Nair PMG, Chung IM (2014a) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162:342–352

    CAS  Google Scholar 

  • Nair PMG, Chung IM (2014b) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ Sci Pollut Res 21:12709–12722

    CAS  Google Scholar 

  • Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313

    CAS  Google Scholar 

  • Nair PMG, Kim S-H, Chung IM (2014) Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36:2947–2958

    Google Scholar 

  • Naz S, Gul A, Zia M (2020) Toxicity of copper oxide nanoparticles: a review study. IET nanobiotechnology 14(1):1–13

    Google Scholar 

  • Olchowik J, Bzdyk RM, Studnicki M, Bederska-Błaszczyk M, Urban A, Aleksandrowicz-Trzcińska M (2017) The effect of silver and copper nanoparticles on the condition of english oak (Quercus robur L.) seedlings in a container nursery experiment. Forests 8:310

    Google Scholar 

  • Pang L-J, Adeel M, Shakoor N, Guo K-R, Ma D-F, Ahmad MA, Lu G-Q, Zhao M-H, Li S-E, Rui Y-K (2021) Engineered nanomaterials suppress the soft rot disease (Rhizopus stolonifer) and slow down the loss of nutrient in sweet potato. Nanomaterials 11:2572

    CAS  Google Scholar 

  • Perreault F, Popovic R, Dewez D (2014) Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ Pollut 185:219–227

    CAS  Google Scholar 

  • Pugazhendhi A, Kumar SS, Manikandan M, Saravanan M (2018) Photocatalytic properties and antimicrobial efficacy of Fe doped CuO nanoparticles against the pathogenic bacteria and fungi. Microb Pathog 122:84–89

    CAS  Google Scholar 

  • Rajendran A, Siva E, Dhanraj C, Senthilkumar S (2018) A green and facile approach for the synthesis copper oxide nanoparticles using Hibiscus rosa-sinensis flower extracts and It’s antibacterial activities. J Bioprocess Biotech 8:324

    Google Scholar 

  • Rajput V, Chen Y, Ayup M (2015) Effects of high salinity on physiological and anatomical indices in the early stages of Populus euphratica growth. Russ J Plant Physiol 62:229–236

    CAS  Google Scholar 

  • Rajput V, Minkina T, Fedorenko A, Sushkova S, Mandzhieva S, Lysenko V, Duplii N, Fedorenko G, Dvadnenko K, Ghazaryan K (2018) Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Sci Total Environ 645:1103–1113

    CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-ur-Rehman M, Farid M, Abbas F (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16

    CAS  Google Scholar 

  • Salah SM, Yajing G, Dongdong C, Jie L, Aamir N, Qijuan H, Weimin H, Mingyu N, Jin H (2015) Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep 5:1–14

    Google Scholar 

  • Salah I, Parkin IP, Allan E (2021) Copper as an antimicrobial agent: recent advances. RSC Adv 11:18179–18186

    CAS  Google Scholar 

  • Sathiyavimal S, Vasantharaj S, Bharathi D, Saravanan M, Manikandan E, Kumar SS, Pugazhendhi A (2018) Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. J Photochem Photobiol B Biol 188:126–134

    CAS  Google Scholar 

  • Shams M, Yildirim E, Guleray A, Ercisli S, Dursun A, Ekinci M, Raziye K (2018) Nitric oxide alleviates copper toxicity in germinating seed and seedling growth of Lactuca sativa L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46:167–172

    CAS  Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915

    CAS  Google Scholar 

  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47

    CAS  Google Scholar 

  • Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, Chen Y, Hu T (2014) Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology 8:179–188

    CAS  Google Scholar 

  • Singh A, Singh N, Hussain I, Singh H (2017) Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. J Biotechnol 262:11–27

    CAS  Google Scholar 

  • Song G, Hou W, Gao Y, Wang Y, Lin L, Zhang Z, Niu Q, Ma R, Mu L, Wang H (2016) Effects of CuO nanoparticles on Lemna minor. Bot Stud 57:1–8

    Google Scholar 

  • Spengler A, Wanninger L, Pflugmacher S (2017) Oxidative stress mediated toxicity of TiO2 nanoparticles after a concentration and time dependent exposure of the aquatic macrophyte Hydrilla verticillata. Aquat Toxicol 190:32–39

    CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    CAS  Google Scholar 

  • Staroń A, Długosz O, Pulit-Prociak J, Banach M (2020) Analysis of the exposure of organisms to the action of nanomaterials. Materials 13:349

    Google Scholar 

  • Sui HJ, Zhang JZ, Wang ZY (2014) Toxicity of copper oxide engineered nanoparticles to maize (Zea mays L.) at different aging times, Advanced Materials Research. Trans Tech Publ:972–975

  • Vivekanandhan P, Swathy K, Thomas A, Kweka EJ, Rahman A, Pittarate S, Krutmuang P (2021) Insecticidal efficacy of microbial-mediated synthesized copper nano-pesticide against insect pests and non-target organisms. Int J Environ Res Public Health 18:10536

    CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    CAS  Google Scholar 

  • Wang S-L, Zhang Y-X, Liu H-Z, Xin H (2014) Phytotoxicity of copper oxide nanoparticles to metabolic activity in the roots of rice. Huan jing ke xue= Huanjing kexue 35:1968–1973

    CAS  Google Scholar 

  • Wang M, Wu C, Cheng Z, Meng H (2015) Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.). Front Plant Sci 6:262

    Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. ACS Publications

    Google Scholar 

  • Woo H, Kang H, Kim A, Jang S, Park JC, Park S, Kim B-S, Song H, Park KH (2012) Azide-alkyne huisgen [3+ 2] cycloaddition using CuO nanoparticles. Molecules 17:13235–13252

    CAS  Google Scholar 

  • Xiong J, Wang Y, Xue Q, Wu X (2011) Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem 13:900–904

    CAS  Google Scholar 

  • Xiong T, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M, Pierart A, Sobanska S (2017) Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ Sci Technol 51:5242–5251

    CAS  Google Scholar 

  • Yang Z, Xiao Y, Jiao T, Zhang Y, Chen J, Gao Y (2020) Effects of copper oxide nanoparticles on the growth of rice (Oryza Sativa L.) seedlings and the relevant physiological responses. Int J Environ Res Public Health 17:1260

    CAS  Google Scholar 

  • Zafar H, Ali A, Zia M (2017) CuO nanoparticles inhibited root growth from Brassica nigra seedlings but induced root from stem and leaf explants. Appl Biochem Biotechnol 181:365–378

    CAS  Google Scholar 

  • Zhang H, Lu L, Zhao X, Zhao S, Gu X, Du W, Wei H, Ji R, Zhao L (2019) Metabolomics reveals the “invisible” responses of spinach plants exposed to CeO2 nanoparticles. Environ Sci Technol 53:6007–6017

    CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Shanghai Science and Technology Commission (No. 21N21900200; 20392000300) and Shanghai Agriculture Applied Technology Development Program (No. 20180203).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. supervised and designed the research; I.H.S. designed and performed most of the experiments; M.A.M. helped in methodology and formal analysis and revised the manuscript; I.A.S. helped resources; M.A.M., M.A., and S.G. helped in data curation; L.C. and Y.Z. revised, discussed, and finalized the manuscript.

Corresponding author

Correspondence to Yidong Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, I.H., Manzoor, M.A., Sabir, I.A. et al. Phytotoxic effects of chemically synthesized copper oxide nanoparticles induce physiological, biochemical, and ultrastructural changes in Cucumis melo. Environ Sci Pollut Res 30, 51595–51606 (2023). https://doi.org/10.1007/s11356-023-26039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26039-9

Keywords

Navigation