Skip to main content

Advertisement

Log in

Promising co-inoculation strategies to reduce arsenic toxicity in soybean

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Arsenic (As) is the cause for concern worldwide due to its high toxicity. Its presence in agricultural soils and groundwater adversely affects soybean (Glycine max L.) growth and yield and also endangers food safety. Plant growth-promoting rhizobacteria (PGPR) could be used as part of cost-effective and eco-friendly strategies to mitigate As phytotoxicity. However, simple inoculation of soybean with PGPR Bradyrhizobium japonicum E109 (E109), a common practice in Argentina, is not effective in counteracting the effects of As exposure. Our aim was to assess whether the response of soybean to arsenate (AsV) and arsenite (AsIII) could be helpfully modulated by co-inoculating E109 with the free-living PGPRs Azospirillum brasilense Cd (Cd) or Bacillus pumilus SF5 (SF5). Co-inoculation with E109 + SF5 alleviated As-induced depletion of chlorophyll a and b, and carotenoid content, reaching an increase of 26, 28 y 31%, respectively. It also enhanced nodulation (15–19%) under As exposure. E109 + Cd and E109 + SF5 induced changes in the antioxidant system, which could be related to the maintenance of redox homeostasis. Moreover, As accumulation was reduced by 53% in aerial parts of plants inoculated with E109 + Cd, and by 16% in the roots of those inoculated with E109 + SF5. The strains selected show interesting potential for the development of biotechnological schemes to improve soybean yield while guaranteeing safer food production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15(1):59

    Article  Google Scholar 

  • Agostini E, de Forchetti SM, Tigier HA (1997) Production of peroxidases by hairy roots of Brassica napus. Plant Cell Tissue Organ Cult 47(2):177–182

    Article  Google Scholar 

  • Armendariz AL, Talano MA, Olmos Nicotra MF, Escudero L, Breser ML, Porporatto C, Agostini E (2019) Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant Physiol Biochem 138:26–35

    Article  CAS  Google Scholar 

  • Armendariz AL, Talano MA, Travaglia C, Reinoso H, Wevar Oller AL, Agostini E (2016) Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol Biochem 98:119–127

    Article  CAS  Google Scholar 

  • Awan SA, Ilyas N, Khan I, Raza MA, Rehman AU, Rizwan M, Rastogi A, Tariq R, Brestic M (2020) Bacillus siamensis reduces cadmium accumulation and improves growth and antioxidant defense system in two wheat (Triticum aestivum L.) varieties. Plants 9(7):878

  • Bali AS, Sidhu GPS (2021) Arsenic acquisition, toxicity and tolerance in plants – from physiology to remediation: a review. Chemosphere 283:131050

  • Banerjee A, Roychoudhury A (2019) Genetic engineering in plants for enhancing arsenic tolerance. In: Prasad MNV (ed) Transgenic plant technology for remediation of toxic metals and metalloids. Academic Press, pp 463–475

    Chapter  Google Scholar 

  • Banerjee A, Hazra A, Das S, Sengupta C (2020) Groundwater inhabited Bacillus and Paenibacillus strains alleviate arsenic-induced phytotoxicity of rice plant. Int J Phytoremediat 22(10):1048–1058

    Article  CAS  Google Scholar 

  • Beauchamp CO, Fridovich I (1973) Isozymes of SOD from wheat germ. Biochem Biophys Acta 317:50e54

  • Belimov AA, Dietz KJ (2000) Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiol Res 155(2):113–121

    Article  CAS  Google Scholar 

  • Ben Fekih I, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q, Rensing C, Cervantes C (2018) Distribution of arsenic resistance genes in prokaryotes. Front Microbiol 9:2473

    Article  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis I.: the mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62(3):293–300

  • Bojović BM, Stojanović J (2005) Chlorophyll and carotenoid content in wheat cultivars as a function of mineral nutrition. Arch Biol Sci 57(4):283–290

    Article  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28(1):25–30

    Article  CAS  Google Scholar 

  • Bustingorri C, Lavado RS (2014) Soybean as affected by high concentrations of arsenic and fluoride in irrigation water in controlled conditions. Agric Water Manage 144:134–139

    Article  Google Scholar 

  • Cassán F, Coniglio A, López G, Molina R, Nievas S, de Carlan CLN, Donadio F, Torres D, Rosas S, Olivera Pedrosa F, de Souza E, Díaz Zorita M, de Bashan L, Mora V (2020) Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol Fertil Soils 56:461–479

    Article  Google Scholar 

  • Chandrakar V, Yadu B, Meena RK, Dubey A, Keshavkant S (2017) Arsenic-induced genotoxic responses and their amelioration by diphenylene iodonium, 24-epibrassinolide and proline in Glycine max L. Plant Physiol Biochem 112:74–86

    Article  CAS  Google Scholar 

  • Corguinha APB, de Souza GA, Gonçalves VC, de Andrade CC, de Lima WEA, Martins FAD, Yamanaka CH, Francisco EAB, Guilherme LRG (2015) Assessing arsenic, cadmium, and lead contents in major crops in Brazil for food safety purposes. J Food Compos Anal 37:143–150

    Article  CAS  Google Scholar 

  • Dardanelli MS, de Cordoba FJF, Espuny MR, Carvajal MAR, Díaz MES, Serrano AMG, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40(11):2713–2721

    Article  CAS  Google Scholar 

  • Das J, Sarkar P (2018) Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii. Sci Total Environ 624:1106–1118

    Article  CAS  Google Scholar 

  • Dere S, Günes T, Sivaci R (1998) Spectrophotometric determination of chlorophyll A, B and total carotenoid contents of some algae species using different solvents. Turk J Bot 22:13e18

  • Fatima A, Kataria S, Prajapati R, Jain M, Agrawal AK, Singh B, Kashyap Y, Tripathi DK, Singh VP, Gadre R (2020) Magnetopriming effects on arsenic stress-induced morphological and physiological variations in soybean involving synchrotron imaging. Physiol Plant 173(1):88–99

    Google Scholar 

  • Filipini LD, Pilatti FK, Meyer E, Ventura BS, Lourenzi CR, Lovato PE (2021) Application of Azospirillum on seeds and leaves, associated with Rhizobium inoculation, increases growth and yield of common bean. Arch Microbiol 203(3):1033–1038

    Article  CAS  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76(5):1145–1152

  • Galindo FS, Teixeira M, Buzetti S, Ludkiewicz MG, Rosa PA, Tritapepe CA (2018) Technical and economic viability of co-inoculation with Azospirillum brasilense in soybean cultivars in the Cerrado. Rev Bras Engenharia Agríc Ambient 22:51–56

    Article  Google Scholar 

  • Gálusová T, Piršelová B, Rybanský Ľ, Krasylenko Y, Mészáros P, Blehová A, Bardáčová M, Moravčíková J, Matušíková I (2020) Plasticity of soybean stomatal responses to arsenic and cadmium at the whole plant level. Pol J Environ Stud 29:3569–3580

    Article  Google Scholar 

  • Goonde DB, Ayana NG (2021) Genetic diversity and character association for yield and yield related traits in soybean (Glycine max L.) genotypes. J Agri Sci Food Res 12:280

  • Guo J, Muhammad H, Lv X, Wei T, Ren X, Jia H, Atif S, Hua L (2020) Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: a review. Chemosphere 246:125823

    Article  CAS  Google Scholar 

  • Hasibuan RFM, Miyatake M, Sugiura H, Agake SI, Yokoyama T, Bellingrath-Kimura SD, Katsura K, Ohkama-Ohtsu N (2021) Application of biofertilizer containing Bacillus pumillus TUAT1 on soybean without inhibiting infection by Bradyrhizobium diazoefficiens USDA110. Soil Sci Plant Nutr 67(5):535–539

    Article  CAS  Google Scholar 

  • Hossain MA, Asada K (1984) Inactivation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen peroxide: its protection by ascorbate. Plant Cell Physiol 25:1285–1295

    CAS  Google Scholar 

  • Irshad S, Xie Z, Mehmood S, Nawaz A, Ditta A, Mahmood Q (2021) Insights into conventional and recent technologies for arsenic bioremediation: a systematic review. Environ Sci Pollut Res 28:18870–18892

    Article  CAS  Google Scholar 

  • Jia X, Cao Y, O’Connor D, Zhu J, Tsang DC, Zou B, Hou D (2021) Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field. Environ Pollut 270:116281

    Article  CAS  Google Scholar 

  • Khan I, Awan SA, Rizwan M, Ali S, Zhang X, Huang L (2021) Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: a review. Environ Pollut 286:117389

    Article  CAS  Google Scholar 

  • Khanna K, Jamwal VL, Kohli SK, Gandhi SG, Ohri P, Bhardwaj R, Adb Allah EF, Hashem A, Ahmad P (2019a) Plant growth promoting rhizobacteria induced Cd tolerance in Lycopersicon esculentum through altered antioxidative defense expression. Chemosphere 217:463–474

    Article  CAS  Google Scholar 

  • Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R (2019b) Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep 9(1):1–14

    Article  Google Scholar 

  • Kumar S, Choudhary AK, Suyal DC, Makarana G, Goel R (2022) Leveraging arsenic resistant plant growth-promoting rhizobacteria for arsenic abatement in crops. J Hazard Mater 425:127965

    Article  CAS  Google Scholar 

  • Lyubun YV, Fritzsche A, Chernyshova MP, Dudel EG, Fedorov EE (2006) Arsenic transformation by Azospirillum brasilense Sp245 in association with wheat (Triticum aestivum L.) roots. Plant Soil 286(1–2):219–227

  • Mariño EE, Ávila GT, Bhattacharya P, Schulz CJ (2020) The occurrence of arsenic and other trace elements in groundwater of the southwestern Chaco-Pampean plain, Argentina. J South Am Earth Sci 100:102547

    Article  Google Scholar 

  • Molina MDC, White JF, García-Salgado S, Quijano M, González-Benítez N (2021) A gnotobiotic model to examine plant and microbiome contributions to survival under arsenic stress. Microorganisms 9(1):45

    Article  CAS  Google Scholar 

  • Mondal S, Pramanik K, Ghosh SK, Pal P, Mondal T, Soren T, Maiti TK (2021) Unraveling the role of plant growth-promoting rhizobacteria in the alleviation of arsenic phytotoxicity: a review. Microbiol Res 250:126809

  • Narożna D, Pudełko K, Króliczak J, Golińska B, Sugawara M, Mądrzak CJ, Sadowsky MJ (2015) Survival and competitiveness of Bradyrhizobium japonicum strains 20 years after introduction into field locations in Poland. Appl Environ Microbiol 81(16):5552–5559

    Article  Google Scholar 

  • Pajuelo E, Rodríguez-Llorente ID, Caviedes MA (2019) Effect of arsenic on legumes: analysis in the model Medicago truncatula-Ensifer interaction. In: de Bruijn F (ed) The model legume Medicago truncatula. Jonh Wiley & Sons, Inc. Pub., pp 268–280.

  • Pál M, Janda T, Szalai G (2018) Interactions between plant hormones and thiol-related heavy metal chelators. Plant Growth Regul 85:173–185

    Article  Google Scholar 

  • Qadir M, Hussain A, Hamayun M, Shah M, Iqbal A, Murad W (2020) Phytohormones producing rhizobacterium alleviates chromium toxicity in Helianthus annuus L. by reducing chromate uptake and strengthening antioxidant system. Chemosphere 258:127386

  • Rondina ABL, dos Santos Sanzovo AW, Guimarães GS, Wendling JR, Nogueira MA, Hungria M (2020) Changes in root morphological traits in soybean co-inoculated with Bradyrhizobium spp. and Azospirillum brasilense or treated with A. brasilense exudates. Biol Fertil Soils 56(4):537–549

  • Sahile AA, Khan MA, Hamayun M, Imran M, Kang SM, Lee IJ (2021) Novel Bacillus cereus strain, ALT1, enhance growth and strengthens the antioxidant system of soybean under cadmium stress. Agronomy 11(2):404

    Article  CAS  Google Scholar 

  • Saleem M, Asghar HN, Zahir ZA, Shahid M (2018) Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Chemosphere 195:606–614

    Article  CAS  Google Scholar 

  • Shahzad A, Qin M, Elahie M, Naeem M, Bashir T, Yasmin H, Younas M, Areeb A, Irfan M, Billah M, Shakoor A, Zulfiqar S (2021) Bacillus pumilus induced tolerance of maize (Zea mays L.) against cadmium (Cd) stress. Sci Rep 11(1):1–11

  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Sidhu GPS, Bali AS, Handa N, Kapoor D, Yadav P, Khanna K, Bakshi P, Rehman A, Kohli SK, Khan EA, Parihar RD, Yuan H, Thukral AK, Bhardwaj R, Zheng B (2020) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul 39:509–531

    Article  CAS  Google Scholar 

  • Sigrist M, Hilbe N, Brusa L, Campagnoli D, Beldoménico H (2016) Total arsenic in selected food samples from Argentina: estimation of their contribution to inorganic arsenic dietary intake. Food Chem 210:96–101

    Article  CAS  Google Scholar 

  • Singh H, Bhat JA, Singh VP, Corpas FJ, Yadav SR (2021) Auxin metabolic network regulates the plant response to metalloids stress. J Hazard Mater 405(5):124250

    Article  CAS  Google Scholar 

  • Singh SB, Srivastava PK (2020) Bioavailability of arsenic in agricultural soils under the influence of different soil properties. SN Appl Sci 2(2):1–16

    Article  Google Scholar 

  • Srivastava S, Shukla K (2019) Microbes are essential components of arsenic cycling in the environment: implications for the use of microbes in arsenic remediation. In: Arora PK (ed) Microbial Metabolism of Xenobiotic Compounds. Springer, Singapore, pp 217–227

    Chapter  Google Scholar 

  • Stefan M, Dunca S, Olteanu Z, Oprica L, Ungureanu E, Hritcu L, Mihasan M, Cojocaru D (2010) Soybean (Glycine max [L] Merr.) inoculation with Bacillus pumilus Rs3 promotes plant growth and increases seed protein yield: relevance for environmentally-friendly agricultural applications. Carpath J Earth Environ Sci 5(1):131–138

  • Talano MA, Cejas RB, Gonzalez PS, Agostini E (2013) Effect of sodium arsenate and arsenite on soybean development and in the symbiotic interaction with Bradyrhizobium japonicum. Plant Physiol Biochem 63:8e14

  • Upadhyay MK, Shukla A, Yadav P, Srivastava S (2019) A review of arsenic in crops, vegetables, animals and food products. Food Chem 276:608–618

    Article  CAS  Google Scholar 

  • Vezza ME, Llanes A, Travaglia C, Agostini E, Talano MA (2018) Arsenic stress effects on root water absorption in soybean plants: physiological and morphological aspects. Plant Physiol Biochem 123:8–17

    Article  CAS  Google Scholar 

  • Vezza ME, Luna DF, Agostini E, Talano MA (2019) Glutathione, a key compound for As accumulation and tolerance in soybean plants treated with AsV and AsIII. Environ Exp Bot 162:272–282

    Article  CAS  Google Scholar 

  • Vezza ME, Nicotra MFO, Agostini E, Talano MA (2020) Biochemical and molecular characterization of arsenic response from Azospirillum brasilense Cd, a bacterial strain used as plant inoculant. Environ Sci Pollut Res 27(2):2287–2300

    Article  CAS  Google Scholar 

  • Vezza ME, Alemano S, Agostini E, Talano MA (2021) Arsenic toxicity in soybean plants: impact on chlorophyll fluorescence, mineral nutrition and phytohormones. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10469-1

    Article  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Wang X, Nie Z, He L, Wang Q, Sheng X (2017) Isolation of As-tolerant bacteria and their potentials of reducing As and Cd accumulation of edible tissues of vegetables in metal (loid)-contaminated soils. Sci Total Environ 579:179–189

    Article  CAS  Google Scholar 

  • Zhu XF, Wang ZW, Dong F, Lei GJ, Shi YZ, Li GX, Zheng SJ (2013) Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. J Hazard Mater 263:398–403

    Article  CAS  Google Scholar 

  • Zulfiqar F, Ashraf M (2022) Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: an overview. J Hazard Mater 427:127891

Download references

Acknowledgements

The authors wish to express their gratitude to Dr. Sergio Alemano (Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, INIAB-CONICET) for providing the Bacillus pumilus SF5 strain.

Funding

This research was financially supported by Fondo para la Investigación Científica y Tecnológica (FONCYT) (grant PICT 2143/17) and by Secretaría de Ciencia y Técnica-Universidad Nacional de Río Cuarto (SeCyT-UNRC).

MEV holds a post-doctoral grant from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). RPP holds a doctoral grant from FONCyT. ALWO, EA, and MAT are members of the Research Career of CONICET.

Author information

Authors and Affiliations

Authors

Contributions

MEV, EA, and MAT: research design. MEV: methodology, investigation, writing – original draft. RPP: data collection. ALWO: writing – review and editing. EA and MAT: funding acquisition, supervision, writing – review and editing.

Corresponding author

Correspondence to Elizabeth Agostini.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vezza, M.E., Pramparo, R.d.P., Wevar Oller, A.L. et al. Promising co-inoculation strategies to reduce arsenic toxicity in soybean. Environ Sci Pollut Res 29, 88066–88077 (2022). https://doi.org/10.1007/s11356-022-21443-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21443-z

Keywords

Navigation