Skip to main content
Log in

Determination of toxic metal burden and related risk factors in pregnant women: a biological monitoring in Sabzevar, Iran

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nowadays, the adverse effect of toxic metals on humans is well known, especially in the fetal period such as preventing cognitive development and congenital abnormalities of the central nervous system. Hence, this study aims to evaluate the toxic metal burden in mothers and newborns in Sabzevar. Obtained data can be useful for authorities in public health issues. To determine heavy metals in placental blood and umbilical cord blood, one hundred eighty blood samples were taken from ninety mothers referred to Shahidan Mobini Hospital for delivery. The amount of metals in samples was analyzed using inductively coupled plasma optical emission spectrometry (ICP OES). The results of this study revealed that 21.52%, 26.19%, and 60.71% of maternal blood samples (placental blood) and 16.47%, 56.47%, and 20% of umbilical cord blood samples were higher than the US center for disease control (CDC) recommended levels for Pb, Cd, and As respectively. According to the multiple linear regression analysis, the Pb (p = 0.054), As (p < 0.001), and Se (p < 0.001) levels had an association with the mother’s living area. Also, there was a significant association between Se (0.021) and the age of the mother. However, the Se values in its optimum concentrations in the blood (60–140 μg/L) can decrease the adverse effects of toxic metals, 72.5% of the pregnant women had Se values below the 60 μg/L and only 6% of pregnant women had Se levels higher than 140 μg/L. We concluded that the mothers inhabiting the rural areas need more Se sources in their diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Saleh I, Shinwari N, Mashhour A et al (2011) Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. Int J Hyg Environ Health 214:79–101. https://doi.org/10.1016/j.ijheh.2010.10.001

    Article  CAS  Google Scholar 

  • Al-Saleh I, Shinwari N, Mashhour A, Rabah A (2014) Birth outcome measures and maternal exposure to heavy metals (lead, cadmium and mercury) in Saudi Arabian population. Int J Hyg Environ Health 217:205–218. https://doi.org/10.1016/j.ijheh.2013.04.009

    Article  CAS  Google Scholar 

  • Awata H, Linder S, Mitchell LE, Delclos GL (2017) Association of dietary intake and biomarker levels of arsenic, cadmium, lead, and mercury among Asian populations in the United States: NHANES 2011–2012. Environ Health Perspect 125:314–323

    Article  CAS  Google Scholar 

  • Ballesteros MTL, Barrado BG, Serrano IN et al (2020) Evaluation of blood mercury and serum selenium levels in the pregnant population of the Community of Madrid, Spain. J Trace Elem Med Biol 57:60–67

    Article  Google Scholar 

  • Baranowska I (1995) Lead and cadmium in human placentas and maternal and neonatal blood (in a heavily polluted area) measured by graphite furnace atomic absorption spectrometry. Occup Environ Med 52:229–232

    Article  CAS  Google Scholar 

  • Bellinger D, Leviton A, Needleman HL et al (1986) Low-level lead exposure and infant development in the first year. Neurobehav Toxicol Teratol 8:151–161

    CAS  Google Scholar 

  • Bhattacharyya K, Sen D, Laskar P et al (2021) Pathophysiological effects of cadmium(II) on human health-a critical review. J Basic Clin Physiol Pharmacol. https://doi.org/10.1515/jbcpp-2021-0173

    Article  Google Scholar 

  • Bizerea TO, Dezsi SG, Marginean O et al (2018) The link between selenium, oxidative stress and pregnancy induced hypertensive disorders. Clin Lab 64:1593–1610. https://doi.org/10.7754/Clin.Lab.2018.180307

    Article  CAS  Google Scholar 

  • Borja-Aburto VH, Hertz-Picciotto I, Lopez MR et al (1999) Blood lead levels measured prospectively and risk of spontaneous abortion. Am J Epidemiol 150:590–597

    Article  CAS  Google Scholar 

  • Breen JG, Eisenmann C, Horowitz S, Miller RK (1994) Cell-specific increases in metallothionein expression in the human placenta perfused with cadmium. Reprod Toxicol 8:297–306

    Article  CAS  Google Scholar 

  • Butler Walker J, Houseman J, Seddon L et al (2006) Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada. Environ Res 100:295–318. https://doi.org/10.1016/j.envres.2005.05.006

    Article  CAS  Google Scholar 

  • Cengiz B, Söylemez F, Öztürk E, Çavdar AO (2004) Serum zinc, selenium, copper, and lead levels in women with second-trimester induced abortion resulting from neural tube defects. Biol Trace Elem Res 97:225–235

    Article  CAS  Google Scholar 

  • Delvin E, Levy E (2020) Chapter 47 - Trace elements: functions and assessment of status through laboratory testing. In: Clarke W, Marzinke MA (eds) Contemporary practice in clinical chemistry (Fourth Edition) [Internet], 4th edn. Academic Press, Cambridge, pp 851–864. https://www.sciencedirect.com/science/article/pii/B9780128154991000478

  • Dórea JG (2019) Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. Environ Res 177:108641. https://doi.org/10.1016/j.envres.2019.108641

    Article  CAS  Google Scholar 

  • Ettinger AS, Arbuckle TE, Fisher M et al (2017) Arsenic levels among pregnant women and newborns in Canada: results from the Maternal-Infant Research on Environmental Chemicals (MIREC) cohort. Environ Res 153:8–16

    Article  CAS  Google Scholar 

  • Fairweather-Tait SJ, Bao Y, Broadley MR et al (2011) Selenium in human health and disease. Antioxid Redox Signal 14:1337–1383

    Article  CAS  Google Scholar 

  • Faita F, Cori L, Bianchi F, Andreassi M (2013) Arsenic-induced genotoxicity and genetic susceptibility to arsenic-related pathologies. Int J Environ Res Public Health 10:1527–1546

    Article  CAS  Google Scholar 

  • Falcon M, Vinas P, Perez-Carceles MD, Luna A (2003) Placental cadmium and lipid peroxidation in smoking women related to newborn anthropometric measurements. Arch Environ Contam Toxicol 45:278–282

    Article  CAS  Google Scholar 

  • García-Esquinas E, Pérez-Gómez B, Fernández-Navarro P et al (2013) Lead, mercury and cadmium in umbilical cord blood and its association with parental epidemiological variables and birth factors. BMC Public Health 13:841

    Article  Google Scholar 

  • Ghaemi SZ, Forouhari S, Dabbaghmanesh MH et al (2013) A prospective study of selenium concentration and risk of preeclampsia in pregnant Iranian women: a nested case–control study. Biol Trace Elem Res 152:174–179

    Article  CAS  Google Scholar 

  • Ghasemi SS, Hadavifar M, Maleki B, Mohammadnia E (2019) Adsorption of mercury ions from synthetic aqueous solution using polydopamine decorated SWCNTs. J Water Process Eng 32:100965. https://doi.org/10.1016/j.jwpe.2019.100965

    Article  Google Scholar 

  • Ghoochani M, Dehghani MH, Mehrabi F et al (2019) Determining additional risk of carcinogenicity and non-carcinogenicity of heavy metals (lead and arsenic) in raw and as-consumed samples of imported rice in Tehran. Iran Environ Sci Pollut Res 26:24190–24197. https://doi.org/10.1007/s11356-019-05778-8

    Article  CAS  Google Scholar 

  • Goyer RA, Haust MD, Cherian MG (1992) Cellular localization of metallothionein in human term placenta. Placenta 13:349–355

    Article  CAS  Google Scholar 

  • Gulson BL, Jameson CW, Mahaffey KR et al (1997) Pregnancy increases mobilization of lead from maternal skeleton. J Lab Clin Med 130:51–62. https://doi.org/10.1016/s0022-2143(97)90058-5

    Article  CAS  Google Scholar 

  • Ha M, Kwon H-J, Lim M-H et al (2009) Low blood levels of lead and mercury and symptoms of attention deficit hyperactivity in children: a report of the children’s health and environment research (CHEER). Neurotoxicology 30:31–36

    Article  CAS  Google Scholar 

  • Hadavifar M, Rastakhiz M, Souvizi B et al (2019) Biomonitoring of maternal and fetal exposure to mercury in Sabzevar and its affecting risk factors. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121781

    Article  Google Scholar 

  • Hernandez-Avila M, Peterson KE, Gonzalez-Cossio T et al (2002) Effect of maternal bone lead on length and head circumference of newborns and 1-month-old infants. Arch Environ Health Int J 57:482–488

    Article  CAS  Google Scholar 

  • Hinwood AL, Callan AC, Ramalingam M et al (2013) Cadmium, lead and mercury exposure in non smoking pregnant women. Environ Res 126:118–124. https://doi.org/10.1016/j.envres.2013.07.005

    Article  CAS  Google Scholar 

  • Hosseini G, Teymouri P, Giahi O, Maleki A (2016) Health Risk Assessment of HeavyMetals in Atmospheric PM10 in Kurdistan University of Medical Sciences Campus. J Maz Univ Med Sci  [Internet] 25(132). Available from: http://jmums.mazums.ac.ir/article-1-6759-en.html

  • Iijima K, Otake T, Yoshinaga J et al (2007) Cadmium, lead, and selenium in cord blood and thyroid hormone status of newborns. Biol Trace Elem Res 119:10–18

    Article  CAS  Google Scholar 

  • Imai H, Suzuki K, Ishizaka K et al (2001) Failure of the expression of phospholipid hydroperoxide glutathione peroxidase in the spermatozoa of human infertile males. Biol Reprod 64:674–683

    Article  CAS  Google Scholar 

  • Jedrychowski W, Jankowski J, Flak E et al (2006) Effects of prenatal exposure to mercury on cognitive and psychomotor function in one-year-old infants: epidemiologic cohort study in Poland. Ann Epidemiol 16:439–447. https://doi.org/10.1016/j.annepidem.2005.06.059

    Article  Google Scholar 

  • Jin Y, Xi S, Li X et al (2006) Arsenic speciation transported through the placenta from mother mice to their newborn pups. Environ Res 101:349–355

    Article  CAS  Google Scholar 

  • Jin L, Zhang L, Li Z et al (2013) Placental concentrations of mercury, lead, cadmium, and arsenic and the risk of neural tube defects in a Chinese population. Reprod Toxicol 35:25–31

    Article  CAS  Google Scholar 

  • Jin L, Liu J, Ye B, Ren A (2014) Concentrations of selected heavy metals in maternal blood and associated factors in rural areas in Shanxi Province, China. Environ Int 66:157–164

    Article  CAS  Google Scholar 

  • Johnston JE, Valentiner E, Maxson P, Miranda ML, Fry RC (2014) Maternal cadmium levels during pregnancy associated with lower birth weight in infants in a North Carolina cohort. PLoS ONE 9(10):e109661. https://doi.org/10.1371/journal.pone.0109661

  • Kafai MR, Ganji V (2003) Sex, age, geographical location, smoking, and alcohol consumption influence serum selenium concentrations in the USA: Third National Health and Nutrition Examination Survey, 1988–1994. J Trace Elem Med Biol 17:13–18. https://doi.org/10.1016/S0946-672X(03)80040-8

    Article  Google Scholar 

  • Käkelä R, Käkelä A, Hyvärinen H (1999) Effects of nickel chloride on reproduction of the rat and possible antagonistic role of selenium. Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol 123:27–37

    Google Scholar 

  • Kantola M, Purkunen R, Kröger P et al (2000) Accumulation of cadmium, zinc, and copper in maternal blood and developmental placental tissue: differences between Finland, Estonia, and St. Petersburg Environ Res 83:54–66

    Article  CAS  Google Scholar 

  • Kaur I, Behl T, Aleya L et al (2021) Role of metallic pollutants in neurodegeneration: effects of aluminum, lead, mercury, and arsenic in mediating brain impairment events and autism spectrum disorder. Environ Sci Pollut Res Int 28:8989–9001. https://doi.org/10.1007/s11356-020-12255-0

    Article  CAS  Google Scholar 

  • Kennedy DA, Woodland C, Koren G (2012) Lead exposure, gestational hypertension and pre-eclampsia: a systematic review of cause and effect. J Obstet Gynaecol (Lahore) 32:512–517

    Article  CAS  Google Scholar 

  • Kim B-M, Lee B-E, Hong Y-C et al (2011) Mercury levels in maternal and cord blood and attained weight through the 24 months of life. Sci Total Environ 410:26–33

    Article  Google Scholar 

  • Kobayashi S, Kishi R, Saijo Y et al (2019) Association of blood mercury levels during pregnancy with infant birth size by blood selenium levels in the Japan Environment and Children’s Study: A prospective birth cohort. Environ Int 125:418–429

    Article  CAS  Google Scholar 

  • Korpela H, Loueniva R, Yrjänheikki E, Kauppila A (1986) Lead and cadmium concentrations in maternal and umbilical cord blood, amniotic fluid, placenta, and amniotic membranes. Am J Obstet Gynecol 155:1086–1089

    Article  CAS  Google Scholar 

  • Kwok RK, Kaufmann RB, Jakariya M (2006) Arsenic in drinking-water and reproductive health outcomes: a study of participants in the Bangladesh Integrated Nutrition Programme. J Health Popul Nutr 24:190–205

    Google Scholar 

  • Lagerkvist BJ, Sandberg S, Frech W et al (1996) Is placenta a good indicator of cadmium and lead exposure? Arch Environ Heal an Int J 51:389–394

    Article  CAS  Google Scholar 

  • Lazarus M, Orct T, Aladrović J et al (2011) Effect of selenium pre-treatment on antioxidative enzymes and lipid peroxidation in Cd-exposed suckling rats. Biol Trace Elem Res 142:611–622

    Article  CAS  Google Scholar 

  • Li H, Huang K, Jin S et al (2019a) Environmental cadmium exposure induces alterations in the urinary metabolic profile of pregnant women. Int J Hyg Environ Health 222:556–562. https://doi.org/10.1016/j.ijheh.2019.02.007

    Article  CAS  Google Scholar 

  • Li X, Li A, Zhang W et al (2019b) A pilot study of mothers and infants reveals fetal sex differences in the placental transfer efficiency of heavy metals. Ecotoxicol Environ Saf 186:109755. https://doi.org/10.1016/j.ecoenv.2019.109755

    Article  CAS  Google Scholar 

  • Lin Z, Chen X, Xi Z et al (2018) Individual heavy metal exposure and birth outcomes in Shenqiu county along the Huai River Basin in China. Toxicol Res (camb) 7:444–453

    Article  CAS  Google Scholar 

  • Linn S, Schoenbaum S (1984) The relationship between prenatal exposure to lead and congenital anomalies. JAMA 251:2956–2959

    Article  Google Scholar 

  • Llorente Ballesteros MT, García Barrado B, Navarro Serrano I et al (2020) Evaluation of blood mercury and serum selenium levels in the pregnant population of the Community of Madrid, Spain. J Trace Elem Med Biol 57:60–67. https://doi.org/10.1016/j.jtemb.2019.09.008

    Article  Google Scholar 

  • Lyons GH, Judson GJ, Ortiz-Monasterio I et al (2005) Selenium in Australia: selenium status and biofortification of wheat for better health. J Trace Elem Med Biol 19:75–82

    Article  CAS  Google Scholar 

  • Magos L, Webb M, Clarkson TW (1980) The interactions of selenium with cadmium and mercury. CRC Crit Rev Toxicol 8:1–42

    Article  CAS  Google Scholar 

  • Marques RC, Dórea JG, Bastos WR et al (2007) Maternal mercury exposure and neuro-motor development in breastfed infants from Porto Velho (Amazon), Brazil. Int J Hyg Environ Health 210:51–60

    Article  CAS  Google Scholar 

  • Martí-Cid R, Llobet JM, Castell V, Domingo JL (2008) Dietary intake of arsenic, cadmium, mercury, and lead by the population of Catalonia, Spain. Biol Trace Elem Res 125:120–132

    Article  Google Scholar 

  • Mazhari SA, Abhari A, Mazhari SN (2019) Geochemical and environmental investigation of sewage-irrigated soils and crops of Sabzevar, NE of Iran. SN Appl Sci 1:1065

    Article  CAS  Google Scholar 

  • McAleer MF, Tuan RS (2001) Metallothionein overexpression in human trophoblastic cells protects against cadmium-induced apoptosis. Vitr Mol Toxicol A J Basic Appl Res 14:25–42

    Article  CAS  Google Scholar 

  • Mohammadnia E, Hadavifar M, Veisi H (2019) Kinetics and thermodynamics of mercury adsorption onto thiolated graphene oxide nanoparticles. Polyhedron 173:114139. https://doi.org/10.1016/j.poly.2019.114139

    Article  CAS  Google Scholar 

  • Motawei SM, Gouda HE (2016) Screening of blood levels of mercury, cadmium, and copper in pregnant women in Dakahlia, Egypt: new attention to an old problem. Biol Trace Elem Res 171:308–314. https://doi.org/10.1007/s12011-015-0525-y

    Article  CAS  Google Scholar 

  • Musik I, Koziol-Montewka M, Toś-Luty S et al (1999) Immunomodulatory effect of selenosemicarbazides and selenium inorganic compounds, distribution in organs after selenium supplementation. Biometals 12:375–382

    Article  Google Scholar 

  • Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141

    Article  CAS  Google Scholar 

  • Navarro-Alarcon M, López-Martınez MC (2000) Essentiality of selenium in the human body: relationship with different diseases. Sci Total Environ 249:347–371

    Article  CAS  Google Scholar 

  • Nishijo M, Nakagawa H, Honda R et al (2002) Effects of maternal exposure to cadmium on pregnancy outcome and breast milk. Occup Environ Med 59:394–397

    Article  CAS  Google Scholar 

  • Nishijo M, Tawara K, Honda R et al (2004) Relationship between newborn size and mother’s blood cadmium levels, Toyama, Japan. Arch Environ Heal an Int J 59:22–25

    Article  CAS  Google Scholar 

  • Niskar AS, Paschal DC, Kieszak SM et al (n.d.) Serum selenium levels in the US population: Third National Health and Nutrition Examination Survey, 1988–1994

  • Oldereid NB, Thomassen Y, Purvis K (1998) Selenium in human male reproductive organs. Hum Reprod 13:2172–2176

    Article  CAS  Google Scholar 

  • Oskarsson A, Widell A, Olsson M, Grawé KP (2004) Cadmium in food chain and health effects in sensitive population groups. Biometals 17:531–534

    Article  CAS  Google Scholar 

  • Osman K, Åkesson A, Berglund M et al (2000) Toxic and essential elements in placentas of Swedish women. Clin Biochem 33:131–138

    Article  CAS  Google Scholar 

  • Pan J, Song H, Pan XC (2007) Reproductive effects of occupational exposure to mercury on female workers in China: a meta-analysis 28(12):1215–1218

  • Pettigrew SM, Pan WK, Berky A et al (2019) In urban, but not rural, areas of Madre de Dios, Peru, adoption of a Western diet is inversely associated with selenium intake. Sci Total Environ 687:1046–1054. https://doi.org/10.1016/j.scitotenv.2019.05.484

    Article  CAS  Google Scholar 

  • Pieczyńska J, Grajeta H (2015) The role of selenium in human conception and pregnancy. J Trace Elem Med Biol 29:31–38

    Article  Google Scholar 

  • Polanska K, Hanke W, Krol A et al (2017) Micronutrients during pregnancy and child psychomotor development: opposite effects of Zinc and Selenium. Environ Res 158:583–589

    Article  CAS  Google Scholar 

  • Ramon R, Ballester F, Aguinagalde X et al (2009) Fish consumption during pregnancy, prenatal mercury exposure, and anthropometric measures at birth in a prospective mother-infant cohort study in Spain–. Am J Clin Nutr 90:1047–1055

    Article  CAS  Google Scholar 

  • Reichrtova E, Ursinyova M, Palkovicova L, Wsolova L (1998) Contents and localization of heavy metals in human placentae. Fresenius J Anal Chem 361:362–364

    Article  CAS  Google Scholar 

  • Rudge CV, Röllin HB, Nogueira CM et al (2009) The placenta as a barrier for toxic and essential elements in paired maternal and cord blood samples of South African delivering women. J Environ Monit 11:1322–1330

    Article  CAS  Google Scholar 

  • Sakamoto M, Murata K, Kubota M et al (2010) Mercury and heavy metal profiles of maternal and umbilical cord RBCs in Japanese population. Ecotoxicol Environ Saf 73:1–6. https://doi.org/10.1016/j.ecoenv.2009.09.010

    Article  CAS  Google Scholar 

  • Sakamoto M, Man Chan H, Domingo JL et al (2012) Changes in body burden of mercury, lead, arsenic, cadmium and selenium in infants during early lactation in comparison with placental transfer. Ecotoxicol Environ Saf 84:179–184. https://doi.org/10.1016/j.ecoenv.2012.07.014

    Article  CAS  Google Scholar 

  • Satarug S, Garrett SH, Sens MA, Sens DA (2009) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118:182–190

    Article  Google Scholar 

  • Sharafi K, Yunesian M, Nodehi RN et al (2019) A systematic literature review for some toxic metals in widely consumed rice types (domestic and imported) in Iran: human health risk assessment, uncertainty and sensitivity analysis. Ecotoxicol Environ Saf 176:64–75

    Article  CAS  Google Scholar 

  • Soong YK, Tseng R, Liu C, Lin PW (1991) Lead, cadmium, arsenic, and mercury levels in maternal and fetal cord blood. J Formos Med Assoc Taiwan yi zhi 90:59–65

    CAS  Google Scholar 

  • Sun H-J, Rathinasabapathi B, Wu B et al (2014) Arsenic and selenium toxicity and their interactive effects in humans. Environ Int 69:148–158

    Article  CAS  Google Scholar 

  • Tekin D, Kayaaltı Z, Aliyev V, Söylemezoğlu T (2012) The effects of metallothionein 2A polymorphism on placental cadmium accumulation: is metallothionein a modifiying factor in transfer of micronutrients to the fetus? J Appl Toxicol 32:270–275

    Article  CAS  Google Scholar 

  • Thompson J, Bannigan J (2008) Cadmium: toxic effects on the reproductive system and the embryo. Reprod Toxicol 25:304–315

    Article  CAS  Google Scholar 

  • Vigeh M, Yokoyama K, Ramezanzadeh F et al (2006) Lead and other trace metals in preeclampsia: a case–control study in Tehran. Iran Environ Res 100:268–275

    Article  CAS  Google Scholar 

  • Walvekar RR, Kane SV, Nadkarni MS et al (2007) Chronic arsenic poisoning: a global health issue–a report of multiple primary cancers. J Cutan Pathol 34:203–206

    Article  CAS  Google Scholar 

  • Wells EM, Jarrett JM, Lin YH et al (2011) Body burdens of mercury, lead, selenium and copper among Baltimore newborns. Environ Res 111:411–417. https://doi.org/10.1016/j.envres.2010.12.009

    Article  CAS  Google Scholar 

  • Woo MK, Young ES, Mostofa MG et al (2018) Lead in air in Bangladesh: exposure in a rural community with elevated blood lead concentrations among young children. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15091947

    Article  Google Scholar 

  • Xu B, Chia S-E, Ong C-N (1994) Concentrations of cadmium, lead, selenium, and zinc in human blood and seminal plasma. Biol Trace Elem Res 40:49–57

    Article  CAS  Google Scholar 

  • Yang L, Wang W, Hou S et al (2002) Effects of selenium supplementation on arsenism: an intervention trial in Inner Mongolia. Environ Geochem Health 24:359–374

    Article  Google Scholar 

  • Zachara BA, Pawluk H, Korenkiewicz J, Skok Ź (2001) Selenium levels in kidney, liver and heart of newborns and infants. Early Hum Dev 63:103–111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mojtaba Hadavifar: conceptualization, methodology, writing—original draft preparation, supervision. Esmail Mohammadnia: writing—original draft, data curation, formal analysis. Sahar Rasaeifar: data curation, writing—original draft. Hamid Heidarian Miri: writing—reviewing and editing. Mitra Rastakhiz: data curation, writing—original draft preparation, sampling. Behnaz Souvizi: supervision, investigation. Mohammad Mohammad-Zadeh: writing—review and editing, validation. Rahim Akrami: software, validation, statistical methodology. Ali Kazemi: ICP OES analysis, sample preparation.

Corresponding author

Correspondence to Rahim Akrami.

Ethics declarations

Ethics approval

Ethical approval was taken from the Ethics Committee of Sabzevar University of Medical Sciences (IR.MEDSAB.REC.1395.67).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Lotfi Aleya

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadavifar, M., Mohammadnia, E., Rasaeifar, S. et al. Determination of toxic metal burden and related risk factors in pregnant women: a biological monitoring in Sabzevar, Iran. Environ Sci Pollut Res 29, 78901–78912 (2022). https://doi.org/10.1007/s11356-022-20510-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20510-9

Keywords

Navigation