Skip to main content
Log in

Bioactivity of Deverra tortuosa essential oil, its nanoemulsion, and phenylpropanoids against the cowpea weevil, a stored grain pest with eco-toxicological evaluations

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The essential oil (EO) was hydrodistilled from of Deverra tortuosa aerial parts. Fifty-six components amounting 99.3% were identified in EO through using gas chromatography–flame ionization detection (GC–FID) and (GC–MS). Phenylpropanoids, dillapiole (41.6%), elemicin (7.3%) and myristicin (5.1%), and the monoterpene, sabinene (4.2%) were identified as the major terpenes. An oil-in-water nanoemulsion (particle size 70.3 nm) was developed from EO adopting a low-energy method. The EO products showed insecticidal and biochemical effects against the cowpea weevil Callosobruchus maculatus. Based on a 48-h exposure period, the oil nanoemulsion exhibited a superior contact bioactivity (LC50 = 10.3 µg/cm2), followed by EO (LC50 = 23.1 µg/cm2), dillapiole (LC50 = 27.8 µg/cm2), and myristicin (LC50 = 37.1 µg/cm2). Upon fumigation, nanoemulsion and EO were superior as fumigants (LC50 after 48 h were 6.9 and 14.3 µl/l, respectively). Test materials showed a residual bioactivity against C. maculatus, where EO, dillapiole, and myristicin showed the strongest grain protecting activity. EO products significantly inhibited acetylcholinesterase (AChE) activity of C. maculatus adults. Test products were safe toward the non-target earthworms and did not alter the viability of cowpea seeds. There are evidences for the potential of using EO of D. tortuosa and its nanoemulsion and phenylpropanoids as natural grain protectants against C. maculatus.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data of this study are available from corresponding author when requested.

References

  • Abbott WS (1925) A method for computing the effectiveness of an insecticide. J Econ Entomol 18(2):265–267. https://doi.org/10.1093/jee/18.2.265a

    Article  CAS  Google Scholar 

  • Abdallah HM, Ezzat SM (2011) Effect of the method of preparation on the composition and cytotoxic activity of the essential oil of Pituranthos tortuosus. Z Naturforsch 66c:143–148. https://doi.org/10.1515/znc-2011-3-408

    Article  Google Scholar 

  • Adak T, Barik N, Patil NB, Govindharaj G-P-P, Gadratagi BG, Annamalai M, Mukherjee AK, Rath PC (2020) Nanoemulsion of eucalyptus oil: an alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst)) of rice. Ind Crop Prod 143:111849

    Article  CAS  Google Scholar 

  • Adams RP (2007) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy, 4th edn. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  • Afshar F, Maggi F, Iannarelli R, Cianfaglione K, Isman MB (2017) Comparative toxicity of Helosciadium nodiflorum essential oils and combinations of their main constituents against the cabbage looper, Trichoplusia ni (Lepidoptera). Ind Crop Prod 98:46–52. https://doi.org/10.1016/j.indcrop.2017.01.004

    Article  CAS  Google Scholar 

  • Almadiy AA, Nenaah GE (2022) Bioactivity and safety evaluations of Cupressus sempervirens essential oil, its nanoemulsion and main terpenes against Culex quinquefasciatus Say. Environ Sci Pollut R 29(9):13417–13430

    Article  CAS  Google Scholar 

  • Athanassiou GC, Kavallieratos NG, Evergetis E, Katsoula A-M, Haroutounian SA (2013) Insecticidal efficacy of silica gel with Juniperus oxycedrus ssp. Oxycedrus (Pinales: Cupressaceae) essential oil against Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium confusum (Coleoptera: Tenebrionidae). J Econ Entomol 106(4):1902–1910. https://doi.org/10.1603/EC12474

    Article  CAS  Google Scholar 

  • Bandara K, Saxena R (1995) A technique for handling and sexing Callosobruchus maculatus (F.) adults (Coleoptera, Bruchidae). J Stored Prod Res 31:97–100. https://doi.org/10.1016/0022-474X(94)00030-W

    Article  Google Scholar 

  • Banga KS, Kumar S, Kotwaliwale N, Mohapatra D (2020) Major insects of stored food grains. Int J Chem Stud 8:2380–2384. https://doi.org/10.22271/chemi.2020.v8.i1aj.8624

    Article  Google Scholar 

  • Belhamel C, Boulekbachee-Makhlouf L, Bedini S, Tani C, Lombardi T, Giannotti P, Madani K, Belhamel K, Conti B (2020) Nanostructured alumina as seed protectant against three stored product insect pests. J Stored Prod Res 87:101607. https://doi.org/10.1016/j.jspr.2020.101607

    Article  Google Scholar 

  • Benelli G (2021) Green synthesis of nanomaterials and their biological applications. Nanomaterials 11:2842. https://doi.org/10.3390/nano11112842

    Article  CAS  Google Scholar 

  • Benelli G, Ceccarelli C, Zeni V, Rizzo R, Verde GL, Sinacori M, Boukouvala MC, Kavallieratos NG, Ubaldi M, Tomassoni D, Benvenuti F, Roy P, Petrelli R, Cappellacci L, Spinozzi E, Maggi F, Canale A (2022) Lethal and behavioural effects of a green insecticide against an invasive polyphagous fruit fly pest and its safety to mammals. Chemosphere 287:132089. https://doi.org/10.1016/j.chemosphere.2021.132089

    Article  CAS  Google Scholar 

  • Benelli G, Pavela R, Drenaggi E, Desneux N, Maggi F (2020) Phytol, (E)-nerolidol and spathulenol from Stevia rebaudiana leaf essential oil as effective and eco-friendly botanical insecticides against Metopolophium dirhodum. Ind Crop Prod 155:112844. https://doi.org/10.1016/j.indcrop.2020.112844

    Article  CAS  Google Scholar 

  • Benelli G, Pavela R, Iannarelli R, Petrelli R, Cappellacci L, Cianfaglione K, Afshar FH, Nicoletti M, Canale A, Maggi F (2017) Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: larvicidal effectiveness on the filariasis vector Culex quinquefasciatus say. Ind Crop Prod 96:186–195

    Article  CAS  Google Scholar 

  • Benelli G, Pavela R, Maggi F, Wandjou JGN, Fofie NGB, Kone Bambae D, Sagratini G, Vittori S, Caprioli G (2019) Insecticidal activity of the essential oil and polar extracts from Ocimum gratissimum grown in Ivory Coast: efficacy on insect pests and vectors and impact on non-target species. Ind Crop Prod 132:377–385

    Article  CAS  Google Scholar 

  • Benelli G, Pavela R, Petrelli R, Cappellacci L, Santini G, Fiorini D, Sut S, Dall’Acqua S, Canale A, Maggi F, (2018a) The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind Crop Prod 122:308–315

    Article  CAS  Google Scholar 

  • Benelli G, Rajeswary M, Govindarajan M (2018b) Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environ Sci Pollut R 25:10218–10227. https://doi.org/10.1007/s11356-016-8146-3

    Article  CAS  Google Scholar 

  • Boulos L (2000) Flora of Egypt, vol 2. AL-Hadara Publishing, Cairo

    Google Scholar 

  • Bughio FM, Wilkins RM (2021) Fitness in a malathion resistant Tribolium castaneum strain; feeding, growth and digestion. J Stored Prod Res 92:101814. https://doi.org/10.1016/j.jspr.2021.101814

    Article  CAS  Google Scholar 

  • Cicció-Alberti JF, Ballestero CM (1997) Constituyentes volátiles de las hojas y espigas de Piper aduncum (Piperaceae) de Costa Rica. Rev Biol Trop 45:783–790

    Google Scholar 

  • Dorla E, Gauvin-Bialecki A, Deuscher Z et al (2017) Insecticidal activity of the leaf essential oil of Peperomia borbonensis Miq. (Piperaceae) and its major components against the Melon Fly Bactrocera cucurbitae (Diptera: Tephritidae). Chem. Biodivers. 14(6):e1600493. https://doi.org/10.1002/cbdv.201600493

    Article  CAS  Google Scholar 

  • Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavor Frag J 23:213–226

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit Analysis, 3rd edn. Cambridge University Press, London

    Google Scholar 

  • Gad HA, Abo Laban GF, Metwaly KH, Al-Anany FS, Abdelgaleil SAM (2021) Efficacy of ozone for Callosobruchus maculatus and Callosobruchus chinensis control in cowpea seeds and its impact on seed quality. J Stored Prod Res 92:101786. https://doi.org/10.1016/j.jspr.2021.101786

    Article  CAS  Google Scholar 

  • Ganji S, Svensson FG, Unelius CR (2020) Asymmetric synthesis of oxygenated monoterpenoids of importance for bark beetle ecology. J Nat Prod 83(11):3332–3337

    Article  CAS  Google Scholar 

  • Giunti G, Campolo O, Laudani F, Palermo D, Zappalà L, Palmeri V (2021) Bioactivity of essential oil-based nano-biopesticides toward Rhyzopertha dominica (Coleoptera: Bostrichidae). Ind Crop Prod 162:113257. https://doi.org/10.1016/j.indcrop.2021.113257

    Article  CAS  Google Scholar 

  • Giunti G, Palermo D, Laudani F, Algeri GM, Campolo O, Palmeri V (2019) Repellence and acute toxicity of a nano-emulsion of sweet orange essential oil toward two major stored grain insect pests. Ind Crop Prod 142:111869. https://doi.org/10.1016/j.indcrop.2019.111869

    Article  CAS  Google Scholar 

  • Guetat A, Boulila A, Boussaid M (2019) Phytochemical profile and biological activities of Deverra tortuosa (Desf.) DC.: a desert aromatic shrub widespread in Northern Region of Saudi Arabia. Nat Prod Res 33(18):2708–2713. https://doi.org/10.1080/14786419.2018.1460842

    Article  CAS  Google Scholar 

  • Hano C, Abbasi BH (2022) Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules 12:31. https://doi.org/10.3390/biom12010031

    Article  CAS  Google Scholar 

  • Hillocks RJ (2012) Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot 31:85–93. https://doi.org/10.1016/j.cropro.2011.08.008

    Article  Google Scholar 

  • Hubert J, Stejskal V, Athanassiou CG, Throne JE (2018) Health hazards associated with arthropod infestation of stored products. Annu Rev Entomol 63:553–573. https://doi.org/10.1146/annurev-ento-020117-043218

    Article  CAS  Google Scholar 

  • Ihekoronye AI, Ngoddy PO (1995) Integrated food science and technology for tropics. Macmillan Publishers Ltd, London

    Google Scholar 

  • Isman MB (2004) Plant essential oils as green pesticides for pest and disease management. ACS Symp Ser 887:41–51

    Article  CAS  Google Scholar 

  • Kang JK, Pittendrigh BR, Onstad DW (2013) Insect resistance management for stored product pests: a case study of cowpea weevil (Coleoptera: Bruchidae). J Econ Entomol 106(6):2473–2490. https://doi.org/10.1603/EC13340

    Article  Google Scholar 

  • Kavallieratos NG, Boukouvala MC, Ntalaka CT, Skourti A, Nika EP, Maggi F, Spinozzi E, Mazzara E, Petrelli R, Lupidi G, Giordani C, Benelli G (2021a) Efficacy of 12 commercial essential oils as wheat protectants against stored-product beetles, and their acetylcholinesterase inhibitory activity. Entomol Gen. https://doi.org/10.1127/entomologia/2021/1255

    Article  Google Scholar 

  • Kavallieratos NG, Skourti A, Nika EP, Ntalaka CT, Boukouvala MC, Bonacucina G, Cespi M, Petrelli R, Cappellacci L, Maggi F, Benelli G, Canale A (2021b) Isofuranodiene-based nanoemulsion: larvicidal and adulticidal activity against tenebrionid beetles attacking stored wheat. J Stored Prod Res 93:101859. https://doi.org/10.1016/j.jspr.2021.101859

    Article  CAS  Google Scholar 

  • Krifa M, Gharad T, Haouala R (2011) Biological activities of essential oil, aqueous and organic extracts of Pituranthos tortuosus (Coss.) Maire. Sci Hortic 128(1):61–67. https://doi.org/10.1016/j.scienta.2010.12.016

    Article  CAS  Google Scholar 

  • Lee BK, Kim JH, Jung JW, Choi JW, Han ES, Lee SH, Ko K-H, Ryu J-H (2005) Myristicin-induced neurotoxicity in human neuroblastoma SK-N-SH cells. Toxicol Lett 157:49–56. https://doi.org/10.1016/j.toxlet.2005.01.012

    Article  CAS  Google Scholar 

  • Lima LA, Ferreira-Sá PS, Garcia MDN Jr, Pereira VLP, Carvalho JCT, Rocha L, Fernandes CP, Souto RNP, Araújo RS, Botas G, Cruz RAS (2021) Nano-emulsions of the essential oil of Baccharis reticularia and its constituents as eco-friendly repellents against Tribolium castaneum. Ind Crop Prod 162:113282. https://doi.org/10.1016/j.indcrop.2021.113282

    Article  CAS  Google Scholar 

  • Liu SQ, Scott IM, Pelletier Y, Kramp K, Durst T, Sims SR, Arnason JT (2014) Dillapiol: a pyrethrum synergist for control of the Colorado potato beetle. J Econ Entomol 107(2):797–805. https://doi.org/10.1603/ec13440

    Article  CAS  Google Scholar 

  • Lu X, Feng Y, Du Y, Zheng Y, Borjigidai A, Zhang X, Du SS (2021) Insecticidal and repellent activity of Thymus quinquecostatus Celak. essential oil and major compositions against three stored-product insects. Chem Biodivers. https://doi.org/10.1002/cbdv.202100374

    Article  Google Scholar 

  • Matysik E, Wofniak A, Paduch R, Rejdak R, Polak B, Donica H (2016) The new TLC method for separation and determination of multicomponent mixtures of plant extracts. J Anal Methods Chem 1813581:6. https://doi.org/10.1155/2016/1813581

    Article  CAS  Google Scholar 

  • Miura PT, Jonsson CM, Queiroz SCN, Chagas EC, Chaves FCM, Reyes FGR (2021) Ecological risk assessment of Piper aduncum essential oil in non-target organisms. Acta Amazon 51(1):71–78. https://doi.org/10.1590/1809-4392202002691

    Article  Google Scholar 

  • Mossa AH, Mohafrash SM, Chandrasekaran N (2018). Safety of natural insecticides: Toxic effects on experimental animals. BioMed Res Int 4308054.https://doi.org/10.1155/2018/4308054

  • Nenaah GE (2014) Chemical composition, toxicity and growth inhibitory activities of essential oils of three Achillea species and their nano-emulsions against Tribolium castaneum (Herbst). Ind Crop Prod 53:252–260. https://doi.org/10.1016/j.indcrop.2013.12.042

    Article  CAS  Google Scholar 

  • Nenaah GE, Almadiy AA, Al-Assiuty BA, Mahnashi MH (2022) The essential oil of Schinus terebinthifolius and its nanoemulsion and isolated monoterpenes: investigation of their activity against Culex pipiens with insights into the adverse effects on non-target organisms. Pest Manag Sci 78(3):1035–1047

    Article  CAS  Google Scholar 

  • Nenaah GE, Ibrahim S, Al-Assiuty B (2015) Chemical composition, insecticidal activity and persistence of three Asteraceae essential oils and their nanoemulsions against Callosobruchus maculatus (F.). J Stored Prod Res 61:9–16. https://doi.org/10.1016/j.jspr.2014.12.007

    Article  Google Scholar 

  • Nisar MS, Haq IU, Ramzan H, Aljedani D, Qasim M, Islam W, Khan K (2021) Screening of different legumes for the developmental preference of Callosobruchus maculatus (Bruchidae: Coleoptera). Int J Trop Insect Sci. https://doi.org/10.1007/s42690-021-00507-6

    Article  Google Scholar 

  • NIST (2017) NIST Chemistry WebBook: NIST Standard Reference Database Number 69. Available: http://webbook.nist.gov/chemistry/. Accessed 12 Sept 2021

  • Papanikolaou NE, Kavallieratos NG, Iliopoulos V et al (2022) Essential oil coating: mediterranean culinary plants as grain protectants against larvae and adults of Tribolium castaneum and Trogoderma granarium. Insects 13(2):165. https://doi.org/10.3390/insects13020165

    Article  Google Scholar 

  • Parra-Arroyo L, González-González RB, Castillo-Zacarías C, Martínez EMM, Sosa-Hernández JE, Bilal M, Iqbal HMN, Barceló D, Parra-Saldívar R (2022) Highly hazardous pesticides and related pollutants: toxicological, regulatory, and analytical aspects. Sci Total Environ 807(3):151879. https://doi.org/10.1016/j.scitotenv.2021.151879

    Article  CAS  Google Scholar 

  • Pavela R (2018) Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environ Sci Pollut R 25:10904–10910. https://doi.org/10.1007/s11356-018-1398-3

    Article  CAS  Google Scholar 

  • Pavela R, Benelli G (2016) Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007. https://doi.org/10.1016/j.tplants.2016.10.005

    Article  CAS  Google Scholar 

  • Pavela R, Maggi F, Cianfaglione K, Bruno M, Benelli G (2018) Larvicidal activity of essential oils of five Apiaceae taxa and some of their main constituents against Culex quinquefasciatus. Chem Biodivers 15(1). https://doi.org/10.1002/cbdv.201700382

  • Pavela R, Maggi F, Mazzara E, Torresi J, Cianfaglione K, Benelli G, Canale A (2021) Prolonged sublethal effects of essential oils from non-wood parts of nine conifers on key insect pests and vectors. Ind Crop Prod 168:113590. https://doi.org/10.1016/j.indcrop.2021.113590

    Article  CAS  Google Scholar 

  • Reddy SR, Fogler HS (1981) Emulsion stability: determination from turbidity. J Colloid Interf Sci 79:101–104. https://doi.org/10.1016/0021-9797(81)90052-7

    Article  CAS  Google Scholar 

  • Rees D (2004) Insects of stored products. CSIRO publishing, Canberra, Australia

    Book  Google Scholar 

  • Rojas-Martínez R, Arrieta J, Cruz-Antonio L, Arrieta-Baez D, Velázquez-Méndez AM, Sánchez-Mendoza ME (2013) Dillapiole, isolated from Peperomia pellucida, shows gastroprotector activity against ethanol-induced gastric lesions in Wistar rats. Molecules 18(9):11327–11337

    Article  Google Scholar 

  • Silva-Aguayo G, Aguilar-Marcelino L, Cuevas-Padilla E, Loyola-Zapata P, Rodríguez-Maciel JC, Castañeda-Ramírez G, Figueroa-Cares I (2021) Essential oil of Peumus boldus Molina against the nematode Haemonchus contortus (L3) and three stored cereal insect pests. Chil J Agr Res 81(3):390–397

    Article  Google Scholar 

  • Song SY, Chang HJ, Kim SD, Kwag EB, Park SJ, Yoo HS (2021) Acute and sub-chronic toxicological evaluation of the herbal product HAD-B1 in Beagle dogs. Toxicol Rep 8:1819–1829. https://doi.org/10.1016/j.toxrep.2021.11.002

    Article  CAS  Google Scholar 

  • Spinozzi E, Pavela R, Bonacucina G, Perinelli DR, Cespi M, Petrelli R, Cappellacci L, Fiorini D, Scortichini S, Garzoli S, Angeloni C, Freschi M, Hrelia S, Quassinti L, Bramucci M, Lupidi G, Sut S, Dall’Acqua S, Benelli G, Canale A, Ttore Drenaggi E, Maggi F (2021) Spilanthol-rich essential oil obtained by microwave-assisted extraction from Acmella oleracea (L.) R.K. Jansen and its nanoemulsion: Insecticidal, cytotoxic and anti-inflammatory activities. Ind Crop Prod 172:114027. https://doi.org/10.1016/j.indcrop.2021.114027

    Article  CAS  Google Scholar 

  • Srivastava S, Bhargava A (2022) Applications of biosynthesized nanoparticles. In: Green nanoparticles: the future of nanobiotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-7106-7_14

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108(50):20260–20264. https://doi.org/10.1073/pnas.1116437108

    Article  Google Scholar 

  • Viana Cruz DL, Sumita TC, Silva Leão Ferreira M, Soares da Silva J, Pinto A, Marques Barcellos JF, Rafael MS (2020) Histopathological, cytotoxicological, and genotoxic effects of the semi-synthetic compound dillapiole n-butyl ether in Balb/C mice. J Toxicol Env Heal A 83(17–18):604–615. https://doi.org/10.1080/15287394.2020.1804026

    Article  CAS  Google Scholar 

  • Wang YK, Yang XN, Zhu X, Xiao XR, Yang XW, Qin HB, Gonzalez FJ, Li F (2019) Role of metabolic activation in elemicin-induced cellular toxicity. J Agric Food Chem 67(29):8243–8252

    Article  CAS  Google Scholar 

  • Wu X-f, Chen M-n, Wang Y-j, Yu S-q, Xia Y-l, Dong C-z, Hou Z-m, Cao Y (2021) Chemical composition and fumigant activities of essential oils from Piper hancei Maxim against Tribolium castaneum (Herbst). J Essent Oil Bear Pl 24(1):86–93. https://doi.org/10.1080/0972060X.2021.1886997

    Article  CAS  Google Scholar 

Download references

Funding

This research is supported by the Deputy for Research and Innovation, Ministry of Education, Saudi Arabia (Grant no. NU/IFC/ENT/01/003), under the institutional Funding Committee at Najran University.

Author information

Authors and Affiliations

Authors

Contributions

GN: designing experiments, investigations, curation, analysis and validation of data, writing, review, and supervision. AA: funding acquisition, resources, and data curation. BA: methodology, data curation, and writing.

Corresponding author

Correspondence to Gomah E. Nenaah.

Ethics declarations

Ethical approval

All international and national ethical guidelines for the care and use of animals are followed.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Giovanni Benelli

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almadiy, A.A., Nenaah, G.E. & Albogami, B.Z. Bioactivity of Deverra tortuosa essential oil, its nanoemulsion, and phenylpropanoids against the cowpea weevil, a stored grain pest with eco-toxicological evaluations. Environ Sci Pollut Res 29, 65112–65127 (2022). https://doi.org/10.1007/s11356-022-20404-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20404-w

Keywords

Navigation