Skip to main content
Log in

Removal of pesticides from secondary treated urban wastewater by reverse osmosis

  • Effective Waste Management with Emphasis on Circular Economy
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The residues of pesticides that reach water resources from agricultural activities in several ways contaminate drinking water resources and threaten aquatic life. This study aimed to investigate the performance of three reverse osmosis (RO) membranes (BW30-LE, SW30-XLE, and GE-AD) in rejecting four different pesticides (tributyl phosphate, flutriafol, dicofol, and irgarol) from secondary treated urban wastewater and also to elucidate the mechanisms underlying the rejection of these pesticides. RO experiments were conducted using pesticide-spiked wastewater samples under 10 and 20 bar transmembrane pressures (TMP) and membrane performances were evaluated. Overall, all the membranes tested exhibited over 95% rejection performances for all pesticides at both TMPs. The highest rejections for tributyl phosphate (99.0%) and irgarol (98.3%) were obtained with the BW30-LE membrane, while for flutriafol (99.9%) and dicofol (99.1%) with the GE-AD membrane. The increase in TMP from 10 to 20 bar did not significantly affect the rejections of all pesticides. The rejection performances of RO membranes were found to be governed by projection area as well as molecular weight and hydrophobicity/hydrophilicity of pesticides. Among the membranes tested, the SW30-XLE membrane was the most prone to fouling due to the higher roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Agenson KO, Urase T (2007) Change in membrane performance due to organic fouling in nanofiltration (NF)/reverse osmosis (RO) applications. Sep Purif Technol 55:147–156

    Article  CAS  Google Scholar 

  • Ahamad T, Naushad M, Al-Saeedi SI, Almotairi S, Alshehri SM 2020 Fabrication of MoS2/ZnS embedded in N/S doped carbon for the photocatalytic degradation of pesticide. Mater Lett 263:127271.

  • Albergamo V, Blankert B, Cornelissen ER, Hofs B, Knibbe WJ, van der Meer W, de Voogt P (2019) Removal of polar organic micropollutants by pilot-scale reverse osmosis drinking water treatment. Water Res 148:535–545

    Article  CAS  Google Scholar 

  • Alonso JJS, El Kori N, Melian-Martel N, Del Rio-Gamero B (2018) Removal of ciprofloxacin from seawater by reverse osmosis. J Environ Manage 217:337–345

    Article  CAS  Google Scholar 

  • Alventosa de Lara E, Barredo Damas S, Alcaina Miranda MI, Iborra Clar MI (2012) Evolution of membrane performance during the ultrafiltration of reactive black 5 solutions: effect of feed characteristics and operating pressure. Chem Eng Trans 29:1285–1290

    Google Scholar 

  • Anderson TA, Salice CJ, Erickson RA, McMurry ST, Cox SB, Smith LM (2013) Effects of landuse and precipitation on pesticides and water quality in playa lakes of the southern high plains. Chemosphere 92:84–90

    Article  CAS  Google Scholar 

  • Ang WS, Yip NY, Tiraferri A, Elimelech M (2011) Chemical cleaning of RO membranes fouled by wastewater effluent: achieving higher efficiency with dual-step cleaning. J Membrane Sci 382:100–106

    Article  CAS  Google Scholar 

  • Ansari MS, Moraiet MA, Ahmad S (2014) Insecticides: impact on the environment and human health. In: Malik A, Grohmann E, Akhtar R (eds) Environmental deterioration and human health: natural and anthropogenic determinants. Springer, Netherlands, pp 99–123

    Chapter  Google Scholar 

  • Apha A, WEF (2012) Standard methods for the examination of water and wastewater, 20th edn. Washington, DC, American Public Health Association

    Google Scholar 

  • Ates N, Yilmaz L, Kitis M, Yetis U (2009) Removal of disinfection by-product precursors by UF and NF membranes in low-SUVA waters. J Membrane Sci 328:104–112

    Article  CAS  Google Scholar 

  • Barbosa MO, Moreira NFF, Ribeiro AR, Pereira MFR, Silva AMT (2016) Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res 94:257–279

    Article  CAS  Google Scholar 

  • Belles A, Franke C, Alary C, Aminot Y, Readman JW (2018) Understanding and predicting the diffusivity of organic compounds in polydimethylsiloxane material for passive sampler applications using a simple quantitative structure-property relationship model. Environ Toxicol Chem 37:1291–1300

    Article  CAS  Google Scholar 

  • Bellona C, Drewes JE, Xu P, Amy G (2004) Factors affecting the rejection of organic solutes during NF/RO treatment - a literature review. Water Res 38:2795–2809

    Article  CAS  Google Scholar 

  • Bester K, Banzhaf S, Burkhardt M, Janzen N, Niederstrasser B, Scheytt T (2011) Activated soil filters for removal of biocides from contaminated run-off and waste-waters. Chemosphere 85:1233–1240

    Article  CAS  Google Scholar 

  • Bielska L, Hale SE, Skulcova L (2021) A review on the stereospecific fate and effects of chiral conazole fungicides. Sci Total Environ 750:141600

    Article  CAS  Google Scholar 

  • Biselli S, Bester K, Huhnerfuss H, Fent K (2000) Concentrations of the antifouling compound Irgarol 1051 and of organotins in water and sediments of German North and Baltic Sea marinas. Mar Pollut Bull 40:233–243

    Article  CAS  Google Scholar 

  • Chaudhari TD, Melo JS, Fulekar MH, D’Souza SF (2012) Tributyl phosphate degradation in batch and continuous processes using Pseudomonas pseudoalcaligenes MHF ENV. Int Biodeter Biodegr 74:87–92

    Article  CAS  Google Scholar 

  • Chen M, Ding W, Zhou M, Zhang H, Ge C, Cui Z, Xing W (2021) Fouling mechanism of PVDF ultrafiltration membrane for secondary effluent treatment from paper mills. Chem Eng Res Des 167:37–45

    Article  CAS  Google Scholar 

  • Cho E, Khim J, Chung S, Seo D, Son Y (2014) Occurrence of micropollutants in four major rivers in Korea. Sci Total Environ 491:138–147

    Article  Google Scholar 

  • Cole JT, Baird JH, Basta NT, Huhnke RL, Storm DE, Johnson GV, Payton ME, Smolen MD, Martin DL, Cole JC (1997) Influence of buffers on pesticide and nutrient runoff from bermudagrass turf. J Environ Qual 26:1589–1598

    Article  CAS  Google Scholar 

  • Dabrowski JM, Peall SKC, Van Niekerk A, Reinecke AJ, Day JA, Schulz R (2002) Predicting runoff-induced pesticide input in agricultural sub-catchment surface waters: linking catchment variables and contamination. Water Res 36:4975–4984

    Article  CAS  Google Scholar 

  • Damtie MM, Kim B, Woo YC, Choi JS (2018) Membrane distillation for industrial wastewater treatment: studying the effects of membrane parameters on the wetting performance. Chemosphere 206:793–801

    Article  CAS  Google Scholar 

  • Dharupaneedi SP, Nataraj SK, Nadagouda M, Reddy KR, Shukla SS, Aminabhavi TM (2019) Membrane-based separation of potential emerging pollutants. Sep Purif Technol 210:850–866

    Article  CAS  Google Scholar 

  • EU (2013) Directive 2013/39/EC of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy text with EEA relevance off J L. European Union 226:1–17

    Google Scholar 

  • Fan LH, Harris JL, Roddick FA, Booker NA (2001) Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Res 35:4455–4463

    Article  CAS  Google Scholar 

  • Fini MN, Zhu JY, Van der Bruggen B, Madsen HT, Muff J (2020) Preparation, characterization and scaling propensity study of a dopamine incorporated RO/FO TFC membrane for pesticide removal. J Membrane Sci 612.

  • Fujioka T, Kodamatani H, Wang YJ, Yu KD, Wanjaya ER, Yuan H, Fang ML, Snyder SA (2020) Assessing the passage of small pesticides through reverse osmosis membranes. J Membrane Sci 595:117577

    Article  CAS  Google Scholar 

  • Goswami L, Kumar RV, Borah SN, Manikandan NA, Pakshirajan K, Pugazhenthi G (2018) Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: a review. J Water Process Eng 26:314–328

    Article  Google Scholar 

  • Harouna BM, Benkortbi O, Hanini S, Amrane A (2019) Modeling of transitional pore blockage to cake filtration and modified fouling index - dynamical surface phenomena in membrane filtration. Chem Eng Sci 193:298–311

    Article  Google Scholar 

  • Heo J, Kim S, Her N, Park CM, Yu M, Yoon Y (2020) Removal of contaminants of emerging concern by FO, RO, and UF membranes in water and wastewater. In: Hernández-Maldonado AJ, Blaney L (eds) Contaminants of emerging concern in water and wastewater. Elsevier, Butterworth-Heinemann, pp 139–176

    Chapter  Google Scholar 

  • Huang FY, Li ZY, Zhang C, Habumugisha T, Liu F, Luo XM (2019) Pesticides in the typical agricultural groundwater in Songnen plain, northeast China: occurrence, spatial distribution and health risks. Environ Geochem Hlth 41:2681–2695

    Article  CAS  Google Scholar 

  • Jergentz S, Mugni H, Bonetto C, Schulz R (2005) Assessment of insecticide contamination in runoff and stream water of small agricultural streams in the main soybean area of Argentina. Chemosphere 61:817–826

    Article  CAS  Google Scholar 

  • SR Khairkar AV Pansare AA Shedge SY Chhatre AK Suresh S Chakrabarti VR Patil AA Nagarkar 2020 Hydrophobic interpenetrating polyamide PDMS membranes for desalination pesticides removal and enhanced chlorine tolerance Chemosphere 258

  • NK Khanzada MU Farid JA Kharraz J Choi CY Tang LD Nghiem A Jang AK An 2020 Removal of organic micropollutants using advanced membrane-based water and wastewater treatment a review J Membrane Sci 598

  • Khazaali F, Kargari A, Rokhsaran M (2014) Application of low-pressure reverse osmosis for effective recovery of bisphenol A from aqueous wastes. Desalin Water Treat 52:7543–7551

    Article  CAS  Google Scholar 

  • Kim HC, Hong JH, Lee S (2006) Fouling of microfiltration membranes by natural organic matter after coagulation treatment: a comparison of different initial mixing conditions. J Membrane Sci 283:266–272

    Article  CAS  Google Scholar 

  • Kim S, Chu KH, Al-Hamadani YAJ, Park CM, Jang M, Kim DH, Yu M, Heo J, Yoon Y (2018) Removal of contaminants of emerging concern by membranes in water and wastewater: a review. Chem Eng J 335:896–914

    Article  CAS  Google Scholar 

  • Kimbrough RA, Litke DW (1996) Pesticides in streams draining agricultural and urban areas in Colorado. Environ Sci Technol 30:908–916

    Article  CAS  Google Scholar 

  • Kosutic K, Dolar D, Asperger D, Kunst B (2007) Removal of antibiotics from a model wastewater by RO/NF membranes. Sep Purif Technol 53:244–249

    Article  CAS  Google Scholar 

  • Kreuger J (1998) Pesticides in stream water within an agricultural catchment in southern Sweden, 1990–1996. Sci Total Environ 216:227–251

    Article  CAS  Google Scholar 

  • Krzeminski P, Schwermer C, Wennberg A, Langford K, Vogelsang C (2017) Occurrence of UV filters, fragrances and organophosphate flame retardants in municipal WWTP effluents and their removal during membrane post-treatment. J Hazard Mater 323:166–176

    Article  CAS  Google Scholar 

  • Leu C, Singer H, Stamm C, Muller SR, Schwarzenbach RP (2004) Variability of herbicide losses from 13 fields to surface water within a small catchment after a controlled herbicide application. Environ Sci Technol 38:3835–3841

    Article  CAS  Google Scholar 

  • Lin JY, Tang CY, Huang CM, Tang YP, Ye WY, Li J, Shen JN, Van den Broeck R, Van Impe J, Volodin A, Van Haesendonck C, Sotto A, Luis P, Van der Bruggen B (2016) A comprehensive physico-chemical characterization of superhydrophilic loose nanofiltration membranes. J Membrane Sci 501:1–14

    Article  CAS  Google Scholar 

  • Liu SQ, Cui T, Xu AL, Han WQ, Li JS, Sun XY, Shen JY, Wang LJ (2018) Electrochemical treatment of flutriafol wastewater using a novel 3D macroporous PbO2 filter: operating parameters, mechanism and toxicity assessment. J Hazard Mater 358:187–197

    Article  CAS  Google Scholar 

  • Liu ZH, Kanjo Y, Mizutani S (2009) Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment - physical means, biodegradation, and chemical advanced oxidation: a review. Sci Total Environ 407:731–748

    Article  CAS  Google Scholar 

  • Lu P, Liu HM, Liu AM (2019) Biodegradation of dicofol by Microbacterium sp D-2 isolated from pesticide-contaminated agricultural soil. Appl Biol Chem 62:72

    Article  Google Scholar 

  • Luo YL, Guo WS, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XCC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473:619–641

    Article  Google Scholar 

  • Margot J, Kienle C, Magnet A, Weil M, Rossi L, de Alencastro LF, Abegglen C, Thonney D, Chevre N, Scharer M, Barry DA (2013) Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Sci Total Environ 461:480–498

    Article  Google Scholar 

  • Margot J, Rossi L, Barry DA, Holliger C (2015) A review of the fate of micropollutants in wastewater treatment plants. Wires Water 2:457–487

    Article  CAS  Google Scholar 

  • Martinez C, Gomez V, Dubert D, Majamaa K, Pocurull E, Borrull F (2015) Study of reverse osmosis treatment for micropollutants rejection in advanced water reuse applications. Desalin Water Treat 55:2690–2699

    Article  CAS  Google Scholar 

  • Mehta R, Saha NK, Bhattacharya A (2017) Pretreatment of agriculture field water for improving membrane flux during pesticide removal. Appl Water Sci 7:3281–3290

    Article  CAS  Google Scholar 

  • MoFWW 2015 Ministry of Forest and Water Works (MoFWW). Surface water quality management. Official Gazette: 29327, Ankara, Turkey. April 15.

  • Mukherjee A, Mehta R, Saha S, Bhattacharya A, Biswas PK, Kole RK (2020) Removal of multiple pesticide residues from water by low-pressure thin-film composite membrane. Appl Water Sci 10:244

    Article  CAS  Google Scholar 

  • Nabe A, Staude E, Belfort G (1997) Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions. J Membrane Sci 133:57–72

    Article  Google Scholar 

  • Nakamura A 1991 International programme on chemical safety. In: Environmental Health Criteria, vol. 112. World Health Orgnization.

  • Nancharaiah YV, Reddy GKK, Mohan TVK, Venugopalan VP (2015) Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms. J Hazard Mater 283:705–711

    Article  CAS  Google Scholar 

  • Noble A (1993) Partition-coefficients (N-Octanol Water) for pesticides. J Chromatogr 642:3–14

    Article  CAS  Google Scholar 

  • Ordonez R, Hermosilla D, Merayo N, Gasco A, Negro C, Blanco A (2014) Application of multi-barrier membrane filtration technologies to reclaim municipal wastewater for industrial use. Sep Purif Rev 43:263–310

    Article  CAS  Google Scholar 

  • Pinto HB, de Souza BM, Dezotti M (2018) Treatment of a pesticide industry wastewater mixture in a moving bed biofilm reactor followed by conventional and membrane processes for water reuse. J Clean Prod 201:1061–1070

    Article  Google Scholar 

  • Plakas KV, Karabelas AJ (2012) Removal of pesticides from water by NF and RU membranes - a review. Desalination 287:255–265

    Article  CAS  Google Scholar 

  • Plumlee MH, Lopez-Mesas M, Heidlberger A, Ishida KP, Reinhard M (2008) N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC-MS/MS. Water Res 42:347–355

    Article  CAS  Google Scholar 

  • Probst M, Berenzen N, Lentzen-Godding A, Schulz R, Liess M (2005) Linking land use variables and invertebrate taxon richness in small and medium-sized agricultural streams on a landscape level. Ecotox Environ Safe 60:140–146

    Article  CAS  Google Scholar 

  • Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT (2015) An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ Int 75:33–51

    Article  CAS  Google Scholar 

  • Rizzo L, Malato S, Antakyali D, Beretsou VG, Dolic MB, Gernjak W, Heath E, Ivancev-Tumbas I, Karaolia P, Ribeiro ARL, Mascolo G, McArdell CS, Schaar H, Silva AMT, Fatta-Kassinos D (2019) Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci Total Environ 655:986–1008

    Article  CAS  Google Scholar 

  • Sahar E, David I, Gelman Y, Chikurel H, Aharoni A, Messalem R, Brenner A (2011) The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination 273:142–147

    Article  CAS  Google Scholar 

  • Schafer AI, Nghiem LD, Waite TD (2003) Removal of the natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis. Environ Sci Technol 37:182–188

    Article  CAS  Google Scholar 

  • Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review. J Environ Qual 33:419–448

    CAS  Google Scholar 

  • Shin MG, Choi W, Park SJ, Jeon S, Hong S, Lee JH (2022) Critical review and comprehensive analysis of trace organic compound (TOrC) removal with polyamide RO/NF membranes: mechanisms and materials. Chem Eng J 427:130957

    Article  CAS  Google Scholar 

  • Siegrist H, Joss A (2012) Review on the fate of organic micropollutants in wastewater treatment and water reuse with membranes. Water Sci Technol 66:1369–1376

    Article  CAS  Google Scholar 

  • Steingrimsdottir MM, Petersen A, Fantke P (2018) A screening framework for pesticide substitution in agriculture. J Clean Prod 192:306–315

    Article  CAS  Google Scholar 

  • Syafrudin M, Kristanti RA, Yuniarto A, Hadibarata T, Rhee J, Al-onazi WA, Algarni TS, Almarri AH, Al-Mohaimeed AM (2021) Pesticides in drinking water-a review. Int J Env Res Pub He 18:468

    Article  CAS  Google Scholar 

  • Tang CY, Yang Z, Guo H, Wen JJ, Nghiem LD, Cornelissen E (2018) Potable water reuse through advanced membrane technology. Environ Sci Technol 52:10215–10223

    Article  CAS  Google Scholar 

  • Tang CYY, Kwon YN, Leckie JO (2009) Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination 242:168–182

    Article  CAS  Google Scholar 

  • J Tang Q Zhang J Zhou HC Fang HF Yang F Wang 2021 Investigation of pesticide residue removal effect of gelatinized starch using surface-enhanced Raman scattering mapping Food Chem 365

  • Thiel A, Guth S, Bohm S, Eisenbrand G (2011) Dicofol degradation to p, p ’-dichlorobenzophenone - a potential antiandrogen. Toxicology 282:88–93

    Article  CAS  Google Scholar 

  • tijani jo, fatoba oo, petrik lf, (2013) A Review of pharmaceuticals and endocrine-disrupting compounds: sources, effects, removal, and detections. Water Air Soil Poll 224:1770

    Article  Google Scholar 

  • Tu SC, Ravindran V, Pirbazari M (2005) A pore diffusion transport model for forecasting the performance of membrane processes. J Membrane Sci 265:29–50

    Article  CAS  Google Scholar 

  • USDA 1947 Federal Insecticide, Fungicide, and Rodenticide Act. Service and regulatory announcement. United States Department of Agriculture Washington, D.C.

  • USEPA 2009 Final contaminant candidate list 3 chemicals: classification of the PCCL to CCL. United States Environmental Protection Agency: EPA 815-R-09–008, Washington, DC.

  • Vagi MC, Petsas AS (2020) Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defined by Directive 2013/39/EU from environmental matrices by using advanced oxidation processes: an overview (2007–2018). J Environ Chem Eng 8:102940

    Article  CAS  Google Scholar 

  • Van der Bruggen B, Schaep J, Maes W, Wilms D, Vandecasteele C (1998) Nanofiltration as a treatment method for the removal of pesticides from ground waters. Desalination 117:139–147

    Article  Google Scholar 

  • Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122:435–445

    Article  Google Scholar 

  • Verliefde ARD, Cornelissen ER, Heijman SGJ, Petrinic I, Luxbacher T, Amy GL, Van der Bruggen B, van Dijk JC (2009) Influence of membrane fouling by (pretreated) surface water on rejection of pharmaceutically active compounds (PhACs) by nanofiltration membranes. J Membrane Sci 330:90–103

    Article  CAS  Google Scholar 

  • Wang J, Tian Z, Huo YB, Yang M, Zheng XC, Zhang Y (2018) Monitoring of 943 organic micropollutants in wastewater from municipal wastewater treatment plants with secondary and advanced treatment processes. J Environ Sci-China 67:309–317

    Article  CAS  Google Scholar 

  • Wang L, Albasi C, Faucet-Marquis V, Pfohl-Leszkowicz A, Dorandeu C, Marion B, Causserand C (2009) Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane. Water Res 43:4115–4122

    Article  CAS  Google Scholar 

  • Wu J, Zhang YY, Wang J, Zheng X, Chen YG (2021) Municipal wastewater reclamation and reuse using membrane-based technologies: a review. Desalin Water Treat 224:65–82

    Article  CAS  Google Scholar 

  • Yangali-Quintanilla V, Maeng SK, Fujioka T, Kennedy M, Li ZY, Amy G (2011) Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse. Desalin Water Treat 34:50–56

    Article  CAS  Google Scholar 

  • Yin ZL, Yang C, Long C, Li AM (2017) Influence of surface properties of RO membrane on membrane fouling for treating textile secondary effluent. Environ Sci Pollut R 24:16253–16262

    Article  CAS  Google Scholar 

  • Zablotowicz RM, Locke MA, Krutz LJ, Lerch RN, Lizotte RE, Knight SS, Gordon RE, Steinriede RW (2006) Influence of watershed system management on herbicide concentrations in Mississippi Delta oxbow lakes. Sci Total Environ 370:552–560

    Article  CAS  Google Scholar 

  • Zhang Q, Tian MM, Wang MY, Shi HY, Wang MH (2014) Simultaneous enantioselective determination of triazole fungicide flutriafol in vegetables, fruits, wheat, soil, and water by reversed-phase high-performance liquid chromatography. J Agr Food Chem 62:2809–2815

    Article  CAS  Google Scholar 

  • Zhang XY, Zhang MH (2011) Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff. Sci Total Environ 409:1949–1958

    Article  CAS  Google Scholar 

  • Zularisam AW, Ismail AF, Salim R (2006) Behaviours of natural organic matter in membrane filtration for surface water treatment - a review. Desalination 194:211–231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge The Scientific and Technological Research Council of Turkey (TUBITAK) for the financial support of the project entitled “Management of Point and Diffuse Pollutant Sources in Yesilirmak River Basin” with the project number 115Y013.

Funding

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu,115Y013,Ulku Yetis

Author information

Authors and Affiliations

Authors

Contributions

NA: Designing the work, performed data collection, formal analysis, visualization, writing the original manuscript, review, and editing. NU: Formal analysis, writing the original manuscript, review, and editing. UY: Writing the original manuscript, review, and editing. FBD: Writing the original manuscript, review, and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nuray Ates.

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

All authors mutually agreed to publish the work in this journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Angeles Blanco

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, N., Uzal, N., Yetis, U. et al. Removal of pesticides from secondary treated urban wastewater by reverse osmosis. Environ Sci Pollut Res 30, 8732–8745 (2023). https://doi.org/10.1007/s11356-022-20077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20077-5

Keywords

Navigation