Skip to main content
Log in

Can the increase in atmospheric temperature enhance the toxicity and risk of fipronil for collembolans in tropical soils?

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We evaluated the toxicity and risk (via toxicity exposure ratio approach — TER) of the insecticide fipronil to collembolan’s growth and reproduction in three tropical soils, under increasing atmospheric temperatures. Chronic toxicity tests were performed with Folsomia candida in tropical artificial soil (TAS), oxisol, and entisol spiked with increasing concentrations of fipronil, at three room temperature scenarios: a standard (20 ± 2 °C), a tropical condition (25 ± 2 °C) and a global warming simulation (27 ± 2 °C). Temperatures influenced the fipronil effects on the species reproduction differently between soil types. In TAS and oxisol the highest toxicities (EC50-based) were found at 27 °C (EC50 TAS = 0.81, 0.70, 0.31 mg kg−1; EC50 OXISOL = 0.52, 0.54, 0.40 mg kg−1; at 20, 25, and 27 °C, respectively). In entisol, the toxicity at 27 °C was lower compared to 25 and 20 °C (EC50 ENTISOL = 0.33, 0.24, 0.12 mg kg−1, respectively). Fipronil concentrations also increased the proportion of small juveniles (growth reduction) in all tested soils. However, this effect was greater (EC10-based) at higher temperatures (25 and/or 27 °C), regardless of the soil type. TER approach revealed a significant risk of fipronil in entisol, regardless of the tested temperature, while in other soils the risk was found significant only at the higher temperatures (25 and 27 °C for TAS, and 27 °C for oxisol). These results indicate that exposures to fipronil at high temperatures (e.g., those resulting from climate change) can threaten F. candida populations, depending on the soil type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

taken from Hennig et al. (2021)

Fig. 2

taken from Hennig et al. (2021). Different letters on the top of the bars indicate differences between concentrations/control, within each soil/temperature (Tukey’s test—p ≤ 0.05)

Similar content being viewed by others

Data availability

The data that support the findings of this study are available and should be requested by e-mail.

References

  • Alves PR, Cardoso EJBN, Martines AM, Sousa JP, Pasini A (2013) Earthworm ecotoxicological assessments of pesticides used to treat seeds under tropical conditions. Chemosphere 90:2674–2682. https://doi.org/10.1016/j.chemosphere.2012.11.046

    Article  CAS  Google Scholar 

  • Alves PRL, Cardoso EJBN, Martines AM, Sousa JP, Pasini A (2014) Seed dressing pesticides on springtails in two ecotoxicological laboratory tests. Ecotoxicol Environ Saf 105:65–71. https://doi.org/10.1016/j.ecoenv.2014.04.010

    Article  CAS  Google Scholar 

  • Alves PRL, Natal-da-Luz T, Sousa JP, Cardoso EJBN (2015) Ecotoxicological characterization of sugarcane vinasses when applied to tropical soils. Sci Total Environ 526:222–232. https://doi.org/10.1016/j.scitotenv.2015.03.150

    Article  CAS  Google Scholar 

  • Alves PRL, Bandeira FO, Giraldi M, Presotto R, Segat JC, Cardoso EJBN, Baretta D (2019) Ecotoxicological assessment of fluazuron: effects on Folsomia candida and Eisenia andrei. Environ Sci Pollut Res 26:5842–5850. https://doi.org/10.1007/s11356-018-4022-7

    Article  CAS  Google Scholar 

  • Bandeira FO, Alves PRL, Hennig TB, Toniolo T, Natal-da-Luz T, Baretta D (2020). Effect of temperature on the toxicity of imidacloprid to Eisenia andrei and Folsomia candida in tropical soils. Environ Pollut 267https://doi.org/10.1016/j.envpol.2020.115565

  • Bandow C, Karau N, Römbke J (2014) Interactive effects of pyrimethanil, soil moisture and temperature on Folsomia candida and Sinella curviseta (Collembola). Appl Soil Ecol 81:22–29. https://doi.org/10.1016/j.apsoil.2014.04.010

    Article  Google Scholar 

  • Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EA, Noome DA, Simon-Delso N, Tapparo A (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res 22:35–67. https://doi.org/10.1007/s11356-014-3332-7

    Article  CAS  Google Scholar 

  • Brodeur JC, Sanchez M, Castro L, Rojas DE, Cristos D, Damonte MJ, Poliserpi MB, D’Andrea MF, Andriulo AE (2017) Accumulation of current-use pesticides, cholinesterase inhibition and reduced body condition in juvenile one-sided livebearer fish (Jenynsia multidentata) from the agricultural Pampa region of Argentina. Chemosphere 185:36–46. https://doi.org/10.1016/j.chemosphere.2017.06.129

    Article  CAS  Google Scholar 

  • Cary TL, Chandler GT, Volz DC, Walse SS, Ferry JL (2004) Phenylpyrazole insecticide fipronil induces male infertility in the Estuarine Meiobenthic Crustacean Amphiascus tenuiremis. Environ Sci Technol 38:522–528. https://doi.org/10.1021/es034494m

    Article  CAS  Google Scholar 

  • Chopra I, Chauhan R, Kumari B, Dahiya KK (2011) Fate of fipronil in cotton and soil under tropical climatic conditions. Bull Environ Contam Toxicol 86:242–245. https://doi.org/10.1007/s00128-010-0180-0

    Article  CAS  Google Scholar 

  • Daam MA, Chelinho S, Niemeyer JC, Owojori OJ, De Silva PMCS, Sousa JP, van Gestel CAM, Römbke J (2019) Environmental risk assessment of pesticides in tropical terrestrial ecosystems: test procedures, current status and future perspectives. Ecotoxicol Environ Saf 181:534–547. https://doi.org/10.1016/j.ecoenv.2019.06.038

    Article  CAS  Google Scholar 

  • Daam MA, Garcia MV, Scheffczyk A, Römbke J (2020). Acute and chronic toxicity of the fungicide carbendazim to the earthworm Eisenia fetida under tropical versus temperate laboratory conditions. Chemosphere 255https://doi.org/10.1016/j.chemosphere.2020.126871

  • Dai W, Slotsbo S, Damgaard C, Ke X, Wu L, Holmstrup M (2019). Synergistic interaction between effects of phenanthrene and dynamic heat stress cycles in a soil arthropod. Environ Pollut 254https://doi.org/10.1016/j.envpol.2019.113071

  • De Silva PMCS, Pathiratne A, van Gestel CAM (2009) Influence of temperature and soil type on the toxicity of three pesticides to Eisenia andrei. Chemosphere 76:1410–1415. https://doi.org/10.1016/j.chemosphere.2009.06.006

    Article  CAS  Google Scholar 

  • Delcour I, Spanoghe P, Uyttendaele M (2015) Literature review: Impact of climate change on pesticide use. Food Res Int 68:7–15. https://doi.org/10.1016/j.foodres.2014.09.030

    Article  Google Scholar 

  • Doran G, Eberbach P, Helliwell S (2006) The sorption and degradation of the rice pesticides fipronil and thiobencarb on two Australian rice-growing soils. Aust J Soil Res 44:599–610. https://doi.org/10.1071/SR05173

    Article  CAS  Google Scholar 

  • EC - European Commission (2002) Guidance Document on Terrestrial Ecotoxicology under Council Directive 91/414/EEC (SANCO/10329/2002) rev.2 final, 17.10.2002, p 1–39

  • EFSA - European Food Safety Authority (2006) Conclusion regarding the peer review of the pesticide risk assessment of the active substance metazachlor. EFSA J 6:1–110. https://doi.org/10.2903/j.efsa.2008.145r

    Article  Google Scholar 

  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (1988) Recomendações técnicas para o cultivo da soja. Circular técnica 16. Unidade de execução de pesquisa de âmbito estadual de Dourados, MS. Dourados

  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (2013) Sistema brasileiro de classificação de solos. Embrapa, Brasília, Brazil.

  • Environmental Canada (2007) Guidance document on statistical methods for environmental toxicity test. Environmental Protection Series, EPS 1/RM/46, 2005 with 2007 updates. Environmental Canada, Ottawa

  • EPPO - European and Mediterranean Plant Protection Organization (2003) Environmental risk assessment scheme for plant protection products. Chapter 4: Soil. OEPP EPP0 Bull 33:151–162

  • ESCAPE (2013). ESCAPE 2.0v: estimation of soil concentrations after pesticide applications. Aachen, Germany: Fraunhofer IME.

  • Figueirêdo LP, Athayde DB, Daam MA, van Gestel CAM, Guerra G da S, Duarte-Neto PJ, Espíndola ELG (2020) Impact of temperature on the toxicity of Kraft 36 EC® (a.s. abamectin) and Score 250 EC® (a.s. difenoconazole) to soil organisms under realistic environmental exposure scenarios. Ecotoxicol Environ Saf 194:110446 https://doi.org/10.1016/j.ecoenv.2020.110446

  • Gaertner K, Chandler GT, Quattro J, Ferguson PL, Sabo-Attwood T (2012) Identification and expression of the ecdysone receptor in the harpacticoid copepod, Amphiascus tenuiremis, in response to fipronil. Ecotoxicol Environ Saf 76:39–45. https://doi.org/10.1016/j.ecoenv.2011.09.008

    Article  CAS  Google Scholar 

  • Garcia MVB (2004) Effects of pesticides on soil fauna: development of ecotoxicological test methods for tropical regions. Ecology and development series, v. 19. Doctoral thesis, University of Bonn.

  • Gunasekara AS, Truong T, Goh KS, Spurlock F, Tjeerdema RS (2007) Environmental fate and toxicology of fipronil. Pestic Sci 32(3):189–199. https://doi.org/10.1584/jpestics.R07-02

    Article  CAS  Google Scholar 

  • Hennig TB, Alves PRL, Toniolo T, Bandeira FO, Santos WE, Cabrera LC, Gilson IK, Baretta D (2021) Toxicity of fipronil to Folsomia candida in contrasting tropical soils and soil moisture contents: effects on the reproduction and growth. Ecotoxicology. https://doi.org/10.1007/s10646-021-02490-7

    Article  Google Scholar 

  • Hochachka P, Somero G (2002) Biochemical adaptation. mechanism and process in physiological evolution. Oxford University Press, New York

  • Hoffmann AA, Sørensen JG, Loeschcke V (2003) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J Therm Biol 28:175–216. https://doi.org/10.1016/S0306-4565(02)00057-8

    Article  Google Scholar 

  • Holmstrup M, Bindesbøl AM, Oostingh GJ, Duschl A, Scheil V, Köhler HR, Loureiro S, Soares AMVM, Ferreira ALG, Kienle C, Gerhardt A, Laskowski R, Kramarz PE, Bayley M, Svendsen C, Spurgeon DJ (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408:3746–3762. https://doi.org/10.1016/j.scitotenv.2009.10.067

    Article  CAS  Google Scholar 

  • ImageJ® software (2013) ImageJ 1.47v [Software], 2013. Washington, DC: National Institutes of Health

  • IPCC (2021) Climate Change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press. IPCC

  • Islam R, Lynch JW (2012) Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels. Br J Pharmacol 165:2707–2720. https://doi.org/10.1111/j.1476-5381.2011.01722.x

    Article  CAS  Google Scholar 

  • ISO - International Organization for Standardization (2014) 11267 Soil quality: inhibition of reproduction of Collembola (Folsomia candida) by soil contaminants. ISO, Geneva

    Google Scholar 

  • Jackson D, Cornell CB, Luukinen B, Buhl K, Stone D (2009) Fipronil technical fact sheet; National Pesticide Information Center, Oregon State University Extension Services. http://npic.orst.edu/factsheets/archive/fiptech.html. Accessed 20 July 2020

  • Jänsch S, Amorim MJ, Römbke J (2005) Identification of the ecological requirements of important terrestrial ecotoxicological test species. Environ Rev 13:51–83. https://doi.org/10.1139/a05-007

    Article  Google Scholar 

  • Jegede OO, Owojori OJ, Römbke J (2017) Temperature influences the toxicity of deltamethrin, chlorpyrifos and dimethoate to the predatory mite Hypoaspis aculeifer (Acari) and the springtail Folsomia candida (Collembola). Ecotoxicol Environ Saf 140:214–221. https://doi.org/10.1016/j.ecoenv.2017.02.046

    Article  CAS  Google Scholar 

  • Li M, Li P, Wang L, Feng M, Han L (2015) Determination and dissipation of fipronil and its metabolites in peanut and soil. J Agric Food Chem 63:4435–4443. https://doi.org/10.1021/jf5054589

    Article  CAS  Google Scholar 

  • Mandal K, Singh B (2013) Persistence of fipronil and its metabolites in sandy loam and clay loam soils under laboratory conditions. Chemosphere 91:1596–1603. https://doi.org/10.1016/j.chemosphere.2012.12.054

    Article  CAS  Google Scholar 

  • Manzoor F, Pervez M (2017) HPLC analysis to determine the half-life and bioavailability of the termiticides bifenthrin and fipronil in soil. J Econ Entomol 110:2527–253. https://doi.org/10.1093/jee/tox249

    Article  CAS  Google Scholar 

  • Mohapatra S, Deepa M, Jagdish GK, Rashmi N, Kumar S, Prakash GS (2010) Fate of fipronil and its metabolites in/on grape leaves, berries and soil under semi arid tropical climatic conditions. Bull Environ Contam Toxicol 84:587–591. https://doi.org/10.1007/s00128-010-9965-4

    Article  CAS  Google Scholar 

  • Natal-da-Luz T, Ojeda G, Pratas J, Van Gestel CAM, Sousa JP (2011) Ecotoxicology and environmental safety toxicity to Eisenia andrei and Folsomia candida of a metal mixture applied to soil directly or via an organic matrix. Ecotoxicol Environ Saf 76:1–6. https://doi.org/10.1016/j.ecoenv.2011.05.017

    Article  CAS  Google Scholar 

  • Navarro S, Barba A, Cámara MA, Navarro S (1992) Persistencia de los plaguicidas en los suelos agrícolas, Procesos y factores condicionantes. Secretariado de publicaciones e intercambio científico, Universidad de Murcia, Spain, p. 105 (in Spanish)

  • Niemeyer JC, Carniel LSC, de Santo FB, Silva M, Klauberg-Filho O (2018) Boric acid as reference substance for ecotoxicity tests in tropical artificial soil. Ecotoxicology 27:395–401. https://doi.org/10.1007/s10646-018-1915-7

    Article  CAS  Google Scholar 

  • Niva CC, Niemeyer JC, Júnior FMRDS, Nunes MET, De Sousa DL, Aragão CWS, Sautter KD, Espindola EG, Sousa JP, Römbke J (2016) Soil ecotoxicology in Brazil is taking its course. Environ Sci Pollut Res 23:11363–11378. https://doi.org/10.1007/s11356-016-6597-1

    Article  CAS  Google Scholar 

  • Prestes OD, Adaime MB, Zanella R (2011) QuEChERS: possibilidades e tendências no preparo de amostra para determinação multirresíduo de pesticidas em alimentos. Sci Chromatogr 3:51–64. https://doi.org/10.4322/sc.2011.004

  • Ribeiro S, Sousa JP, Nogueira AJA, Soares AMVM (2001) Effect of endosulfan and parathion on energy reserves and physiological parameters of the terrestrial isopod Porcellio dilatatus. Ecotoxicol Environ Saf 49:131–138. https://doi.org/10.1006/eesa.2001.2045

    Article  CAS  Google Scholar 

  • Römbke J, Garcia MV, Scheffczyk A (2007) Effects of the fungicide benomyl on earthworms in laboratory tests under tropical and temperate conditions. Arch Environ Contam Toxicol 53:590–598. https://doi.org/10.1007/s00244-006-0219-8

    Article  CAS  Google Scholar 

  • San Miguel A, Raveton M, Lempérière G, Ravanel P (2008) Phenylpyrazoles impact on Folsomia candida (Collembola). Soil Biol Biochem 40:2351–2357. https://doi.org/10.1016/j.soilbio.2008.05.014

    Article  CAS  Google Scholar 

  • Seeland A, Oehlmann J, Müller R (2012) Aquatic ecotoxicity of the fungicide pyrimethanil: effect profile under optimal and thermal stress conditions. Environ Pollut 168:161–169. https://doi.org/10.1016/j.envpol.2012.04.020

    Article  CAS  Google Scholar 

  • Sharma S, Bharat A, Das VM (2013) Study of soil: an important consideration for sustainable settlement development–in context of water resources. Int J Emerg Technol 4:139–148

    Google Scholar 

  • Shuai X, Chen J, Ray C (2012) Adsorption, transport and degradation of fipronil termiticide in three Hawaii soils. Pest Manag Sci 68:731–739. https://doi.org/10.1002/ps.2320

    Article  CAS  Google Scholar 

  • Simon-Delso N, Amaral-Rogers V, Pisa L, Chagnon M, Stark JD, Furlan L, Van Dyck H, Krupke CH, Downs C, Liess M, Belzunces LP, Wiemers M, Girolami V, Goulson D, Giorio C, Settele J, Mitchell EAD, Tapparo A, Noome DA, Morrissey CA, McField M, Bonmatin JM, Long E, Mineau P, Gibbons DW, Whitehorn PR, Kreutzweiser DP, Van der Sluijs JP, Van Praagh J (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22:5–34. https://doi.org/10.1007/s11356-014-3470-y

  • Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S, Dong Y, Harley CDG, Marshall DJ, Helmuth BS, Huey RB (2016) Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol Lett 19:1372–1385. https://doi.org/10.1111/ele.12686

    Article  Google Scholar 

  • Singh NS, Sharma R, Singh SK, Singh DK (2021) A comprehensive review of environmental fate and degradation of fipronil and its toxic metabolites. Environ Res 199:111316. https://doi.org/10.1016/j.envres.2021.111316

    Article  CAS  Google Scholar 

  • Sousa JP, Loureiro S, Pieper S, Frost M, Kratz W, Nogueira AJA, Soares AMVM (2000) Soil and plant diet exposure routes and toxicokinetics of lindane in a terrestrial isopod. Environ Toxicol Chem 19:2557–2563. https://doi.org/10.1002/etc.5620191023

    Article  CAS  Google Scholar 

  • Souza ED, Carneiro MAC, Paulino HB (2005) Physical attributes of a Typic Quartzipisamment and a Rhodic Hapludox under different management systems. Pesq Agrop Brasileira 40:1135–1139

    Article  Google Scholar 

  • Spomer NA, Kamble ST, Warriner RA, Davis RW (2008) Influence of temperature on rate of uptake and subsequent horizontal transfer of [14C]fipronil by eastern subterranean termites (Isoptera: Rhinotermitidae). J Econ Entomol 101:902–908. https://doi.org/10.1603/0022-0493(2008)101[902:IOTORO]2.0.CO;2

    Article  CAS  Google Scholar 

  • Sulmon C, Van Baaren J, Cabello-Hurtado F, Gouesbet G, Hennion F, Mony C, Renault D, Bormans M, El Amrani A, Wiegand C, Gérard C (2015) Abiotic stressors and stress responses: what commonalities appear between species across biological organization levels? Environ Pollut 202:66–77. https://doi.org/10.1016/j.envpol.2015.03.013

    Article  CAS  Google Scholar 

  • Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais, 2nd edn. Universidade Federal do Rio Grande do Sul, Porto Alegre, p 147 (Boletim Técnico, 5)

  • TIBCO Data Science (2013) STATISTICA 13.5.0.17.v: Data analysis software system [Software]. Palo Alto, CA: TIBCO Software.

  • Tingle CC, Rother JA, Dewhust CF, Lauer S, King WJ (2003) Fipronil: environmental fate, ecotoxicology, and human health concerns. Rev Environ Contam Toxicol 176:1–66

    Google Scholar 

  • Triques MC, Oliveira D, Goulart BV, Montagner CC, Espíndola ELG, de Menezes-Oliveira VB (2021) Assessing single effects of sugarcane pesticides fipronil and 2,4-D on plants and soil organisms. Ecotoxicol Environ Saf 208:111622. https://doi.org/10.1016/j.ecoenv.2020.111622

    Article  CAS  Google Scholar 

  • Waagner D, Heckmann LH, Malmendal A, Nielsen NC, Holmstrup M, Bayley M (2010) Hsp70 expression and metabolite composition in response to short-term thermal changes in Folsomia candida (Collembola). Comp Biochem Physiol - A Mol Integr Physiol 157:177–183. https://doi.org/10.1016/j.cbpa.2010.06.171

    Article  CAS  Google Scholar 

  • Walker C, Hopkin S, Sibly R, Peakall D (2001) Principles of ecotoxicology, 2nd edn. Taylor and Francis, London

    Google Scholar 

  • Ying GG, Kookana RS (2006) Persistence and movement of fipronil termiticide with under-slab and trenching treatments. Environ Toxicol Chem 25:2045–2050. https://doi.org/10.1897/05-652R.1

    Article  CAS  Google Scholar 

  • Zhou Z, Wu X, Lin Z, Pang S, Mishra S, Chen S (2021) Biodegradation of fipronil: current state of mechanisms of biodegradation and future perspectives. Appl Microbiol Biotechnol 105:7695–7708. https://doi.org/10.1007/s00253-021-11605-3

    Article  CAS  Google Scholar 

  • Zortéa T, dos Reis TR, Serafini S, de Sousa JP, da Silva AS, Baretta D (2018) Ecotoxicological effect of fipronil and its metabolites on Folsomia candida in tropical soils. Environ Toxicol Pharmacol 62:203–209. https://doi.org/10.1016/j.etap.2018.07.011

    Article  CAS  Google Scholar 

  • Zortéa T, da Silva AS, dos Reis TR, Segat JC, Paulino AT, Sousa JP, Baretta D (2018) Ecotoxicological effects of fipronil, neem cake and neem extract in edaphic organisms from tropical soil. Ecotoxicol Environ Saf 166:207–214. https://doi.org/10.1016/j.ecoenv.2018.09.061

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the National Council for Scientific and Technological Development (CNPq) for the research grant (Project 407170/2016-2). DB thanks the CNPq for the Research Productivity Grant (CNPq — 305939/2018-1). AS thanks the Federal University of Fronteira Sul (process PES-2018-0959). TBH thanks the Coordination for the Improvement of Higher Education Personnel (CAPES) for their master grant (process number 88882.447285/2019-01).

Author information

Authors and Affiliations

Authors

Contributions

TBH: conceptualization, data curation, formal analysis, investigation, writing — original draft. PRLA: conceptualization, formal analysis, funding acquisition, investigation, project administration, resources, supervision, writing — review and editing. AS: investigation, formal analysis. RSA: investigation. LCC: investigation, data curation, formal analysis. RBM: investigation. DB: conceptualization, resources, supervision, writing — review and editing.

Corresponding author

Correspondence to Paulo Roger Lopes Alves.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Brazilian regimentation for the scientific use of animals — Law no. 11.794). Consent to participate is not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Responsible Editor: Kitae Baek

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Supplementary file2 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hennig, T.B., Lopes Alves, P.R., Schiehl, A. et al. Can the increase in atmospheric temperature enhance the toxicity and risk of fipronil for collembolans in tropical soils?. Environ Sci Pollut Res 29, 27104–27114 (2022). https://doi.org/10.1007/s11356-021-18349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-18349-7

Keywords

Navigation