Skip to main content
Log in

A biochemical, physiological and molecular evaluation of how the herbicide 2, 4-dichlorophenoxyacetic acid intercedes photosynthesis and diazotrophy in the cyanobacterium Nostoc muscorum Meg 1

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Among the non-target microorganisms residing in crop fields that are potentially vulnerable to herbicides are cyanobacteria. They contribute to the maintenance of soil quality and fertility and hence are considered to be an important component of soil microflora. Consequently, the present study was aimed to check the influence of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on some major parameters of carbon (CO2) and nitrogen (N2) fixations of a cyanobacterium Nostoc muscorum Meg 1 isolated from a rice field in Cherrapunji, Meghalaya, India. These include various photosynthetic pigments, the oxygen-evolving complex activity of the PSII, the protein contents of RuBisCO, D1 protein, isocitrate dehydrogenase (IDH), nitrogenase and glutamine synthetase (GS) enzymes, the heterocyst percentage, nitrogenase and GS enzyme activities, and production of total proteins and carbohydrates in the cyanobacterium in a varying range of 50 to 125 ppm doses of 2,4-D. The mRNA levels of several proteins were also analyzed. Besides carotenoid concentration that enhanced at 50 ppm, all other parameters were compromised by 2,4-D in a dose-dependent manner resulting in a reduction in photosynthetic and N2-fixing activities. The negative effect on N2-fixation was partly due to compromised IDH activity. RT-PCR analysis further showed that these negative effects were initiated at transcription levels as mRNA contents of all enzymes studied were found compromised under 2,4-D exposure. The scanning and transmission electron microscopy further revealed herbicide induced adverse changes in the morphology and ultrastructure of the organism. The significance of the work lies in its detailed analysis of the effect of 2,4-D at biochemical, physiological, and molecular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data generated during this study have been provided in the manuscript.

References

  • Ahad RIA, Goswami S, Syiem MB (2017) Biosorption and equilibrium isotherms study of cadmium removal by Nostoc muscorum Meg 1: morphological, physiological and biochemical alterations. 3 Biotech 7:1–12

    Article  Google Scholar 

  • Ahmad M, Pataczek L, Hilger TH et al (2018) Perspectives of microbial inoculation for sustainable development and environmental management. Front Microbiol 9:1–26

    Article  CAS  Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  Google Scholar 

  • Allen MM, Turnburke AC, Lagace EA, Steinback KE (1983) Effects of photosystem II herbicides on the photosynthetic membranes of the cyanobacterium Aphanocapsa 6308. Plant Physiol 71:388–392

    Article  CAS  Google Scholar 

  • Antonacci A, Lambreva MD, Margonelli A et al (2018) Photosystem-II D1 protein mutants of Chlamydomonas reinhardtii in relation to metabolic rewiring and remodelling of H-bond network at QB site. Sci Rep 8:1–14

    Article  CAS  Google Scholar 

  • Bargaz A, Lyamlouli K, Chtouki M et al (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606

    Article  Google Scholar 

  • Barthel S, Bernát G, Seidel T et al (2013) Thylakoid membrane maturation and PSII activation are linked in greening Synechocystis sp. PCC 6803 cells. Plant Physiol 163:1037–1046

    Article  CAS  Google Scholar 

  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Casella S, Huang F, Mason D et al (2017) Dissecting the native architecture and dynamics of cyanobacterial photosynthetic machinery. Mol Plant 10:1434–1448

    Article  CAS  Google Scholar 

  • Chapman RL (2013) Algae: the world’s most important “plants”—an introduction. Mitig Adapt Strateg Glob Chang 18:5–12

    Article  Google Scholar 

  • Chen L, Xie M, Bi Y et al (2012) The combined effects of UV-B radiation and herbicides on photosynthesis, antioxidant enzymes and DNA damage in two bloom-forming cyanobacteria. Ecotoxicol Environ Saf 80:224–230

    Article  CAS  Google Scholar 

  • Chittora D, Meena M, Barupal T, Swapnil P (2020) Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem Biophys Reports 22:100737

    Article  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419

    Article  CAS  Google Scholar 

  • de Castro Marcato AC, de Souza CP, Fontanetti CS (2017) Herbicide 2, 4-D: a review of toxicity on non-target organisms. Water Air Soil Pollut 228:120

    Article  CAS  Google Scholar 

  • Demoulin CF, Lara YJ, Cornet L et al (2019) Cyanobacteria evolution: insight from the fossil record. Free Radic Biol Med 140:206–223

    Article  CAS  Google Scholar 

  • Deng L, Senseman SA, Gentry TJ et al (2015) Effect of selected herbicides on growth and lipid content of Nannochloris oculata. J Aquat Plant Manag 53:28–35

    Google Scholar 

  • DeRuyter YS, Fromme P (2008) Molecular structure of the photosynthetic apparatus. In: Herrero A, Flores E (eds) The cyanobacteria, molecular biology, genomics and evolution. Caister Academic Press, pp 217–269

    Google Scholar 

  • Fróna D, Szenderák J, Harangi-Rákos M (2019) The challenge of feeding the world. Sustainability 11:5816

    Article  Google Scholar 

  • Galhano V, Peixoto F, Gomes-Laranjo J, Fernández-Valiente E (2010) Comparative toxicity of bentazon and molinate on growth, photosynthetic pigments, photosynthesis, and respiration of the portuguese ricefield cyanobacterium Nostoc muscorum. Environ Toxicol 25:147–156

    CAS  Google Scholar 

  • Gupta SK, Chakraborty AP (2020) Cyanobacterial biofertilizer for sustainable agriculture and environment. Int J Creat Res Thoughts 8:4–10

    Google Scholar 

  • Hall L, Beckie H, Wolf TM (1999) How herbicides work. In: How herbicides work: Biology to application. Agriculture, Food and Rural Development. Publishing Branch, Edmonton, Alberta, pp 1–146

  • Issa AA, Abd-Alla MH, Ohyama T (2014) Nitrogen fixing cyanobacteria: future prospect. Adv Biol Ecol nitrogen Fixat 2:24–48

    Google Scholar 

  • Jhala YK, Panpatte DG, Vyas RV (2017) Cyanobacteria: source of organic fertilizers for plant growth. In: Panpatte D, Jhala Y, Vyas R, Shelat H (eds) Microorganisms for green revolution. Microorganisms for Sustainability, Springer, Singapore, pp 253–264

    Chapter  Google Scholar 

  • Jyothi KBL (2016) Study of herbicidal effect 0f 2, 4-D on growth and cellular metabolites in cyanobacterium Synechococcus aeruginosus from rice fields. J Algal Biomass Utln 7:1–3

    CAS  Google Scholar 

  • Kaushik BD (2014) Developments in cyanobacterial biofertilizer. Proc Indian Natl Sci Acad 80:379–388

    Article  Google Scholar 

  • Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2:1–20

    Article  CAS  Google Scholar 

  • Kumar NJI, Amb MK, Kumar RN, Bora A (2010) Consequences of 2, 4-D and pencycuron treatment on three different cyanobacterial species-Anabaena fertilissima Rao, Aulosira fertilissima Ghose and Westiellopsis prolifica Janet. Electron J Environ Agric Food Chem 9:847–859

    Google Scholar 

  • Kuznecova J, Šulčius S, Vogts A et al (2020) Nitrogen flow in diazotrophic cyanobacterium Aphanizomenon flos-aquae is altered by cyanophage infection. Front Microbiol 11:1–14

    Article  Google Scholar 

  • Kynshi BL, Sachu M, Syiem MB (2021) Modulation in isocitrate dehydrogenase activity under citrate enrichment affects carbon and nitrogen fixations in the cyanobacterium Nostoc muscorum Meg 1. Biochimie 186:94–104

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  Google Scholar 

  • Lopes G, Clarinha D, Vasconcelos V (2020) Carotenoids from cyanobacteria: a biotechnological approach for the topical treatment of psoriasis. Microorganisms 8:302

    Article  CAS  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    Article  CAS  Google Scholar 

  • Marin-Morales MA, Ventura-Camargo BDC, Hoshina MM (2013) Toxicity of herbicides: impact on aquatic and soil biota and human health. In: Price AJ, Kelton JA (eds) Herbicides–current research and case studies in use. InTech Rijeka, Croatia, pp 399–443

    Google Scholar 

  • Meeks JC (1998) Symbiosis between nitrogen-fixing cyanobacteria and plants. Bioscience 48:266–276

    Article  Google Scholar 

  • Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66:94–121

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Datta R et al (2020) Impact of agrochemicals on soil microbiota and management: a review. Land 9:1–21

    Article  Google Scholar 

  • Mona S, Kumar V, Deepak B, Kaushik A (2020) Cyanobacteria: the eco-friendly tool for the treatment of industrial wastewaters. In: Bharagava R, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 389–413

    Chapter  Google Scholar 

  • Morgan RC (1967) The carotenoids of Queensland fruits -carotenes of the watermelon (Citrullus vulqaris). J Food Sci 32:275–278

    Article  CAS  Google Scholar 

  • Muro-Pastor MI, Florencio FJ (1992) Purification and properties of NADP-isocitrate dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC 6803. Eur J Biochem 203:99–105

    Article  CAS  Google Scholar 

  • Murton J, Nagarajan A, Nguyen AY et al (2017) Population-level coordination of pigment response in individual cyanobacterial cells under altered nitrogen levels. Photosynth Res 134:165–174

    Article  CAS  Google Scholar 

  • Nirmal Kumar JI, Bora A, Amb MK, Kumar RN (2011) An evaluation of pesticide stress induced proteins in three cyanobacterial species Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica using SDS-PAGE. Adv Env Biol 5:739–745

    Google Scholar 

  • Nongbri BB, Syiem MB (2012) Analysis of heavy metal accumulation in water and fish (Cyprinus carpio) meat from Umiam Lake in Meghalaya, India. Int Multidiscip Res J 2:73–76

    Google Scholar 

  • Okmen G, Turkcan O, Erdal P (2013) Effect of herbicides on chlorophyll-a, β- carotene, phycocyanin and allophycocyanin content of Anabaena sp. J Appl Biol Sci 7:20–27

    Google Scholar 

  • Pansook S, Incharoensakdi A, Phunpruch S (2019) Effects of the photosystem II inhibitors CCCP and DCMU on hydrogen production by the unicellular halotolerant cyanobacterium Aphanothece halophytica. Sci World J 2019:1–11

    Article  CAS  Google Scholar 

  • Pathak J, Maurya PK, Singh SP et al (2018) Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Front Environ Sci 6:1–13

    Article  Google Scholar 

  • Pimentel D (2009) Pesticides and pest control. In: Peshin R, Dhawan AK (eds) Integrated pest management: innovation-development process. Springer, Dordrecht, pp 83–87

    Chapter  Google Scholar 

  • Popp J, Pető K, Nagy J (2013) Pesticide productivity and food security. A review. Agron Sustain Dev 33:243–255

    Article  Google Scholar 

  • Prasanna R, Jaiswal P, Nayak S et al (2009) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 49:89–97

    Article  CAS  Google Scholar 

  • Rahaman MM, Islam KS, Jahan M (2018) Rice farmers’ knowledge of the risks of pesticide use in Bangladesh. J Heal Pollut 8:181203

    Article  Google Scholar 

  • Rai AN, Borthakur M, Bergman B (1992) Nitrogenase derepression, its regulation and metabolic changes associated with diazotrophy in the non-heterocystous cyanobacterium Plectonema boryanum PCC 73110. J Gen Microbiol 138:481–491

    Article  CAS  Google Scholar 

  • Rashkov GD, Dobrikova AG, Pouneva ID et al (2012) Sensitivity of Chlorella vulgaris to herbicides. Possibility of using it as a biological receptor in biosensors. Sensors Actuators B Chem 161:151–155

    Article  CAS  Google Scholar 

  • Raven JA, Beardall J (2003) Carbohydrate metabolism and respiration in algae. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Springer, Pp 205–224

  • Rippka R, Deruelles J, Waterbury JB (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Robinson SJ, Deroo CS, Yocum CF (1982) Photosynthetic electron transfer in preparations of the cyanobacterium Spirulina platensis. Plant Physiol 70:154–161

    Article  CAS  Google Scholar 

  • Roe JH (1955) In blood and reagent*. J Biol Chem 212:335–343

    Article  CAS  Google Scholar 

  • Sachu M, Kynshi BL, Syiem MB (2021) Herbicide monuron mediated alterations in carbon and nitrogen fixation in the cyanobacterium Nostoc muscorum Meg 1. J Appl Phycol 33:2209–2220

    Article  CAS  Google Scholar 

  • Sampaio MJAM, Rowell P, Stewart WDP (1979) Purification and some properties of glutamine synthetase from the nitrogen-fixing cyanobacteria Anabaena cylindrica and a Nostoc sp. J Gen Microbiol 111:181–191

    Article  CAS  Google Scholar 

  • Schreiber U, Gademann R, Bird P et al (2002) Apparent light requirement for activation of photosynthesis upon rehydration of desiccated beachrock microbial mats. J Phycol 38:125–134

    Article  Google Scholar 

  • Senseman SA (2007) Herbicide handbook (No. 632.954 W394h9). In: Lawrence, US: Weed Science Society of America, 9th edn. Kansas, pp 458

  • Sharma A, Kumar V, Shahzad B et al (2020) Photosynthetic response of plants under different abiotic stresses: A review. J Plant Growth Regul 39:509–531

    Article  CAS  Google Scholar 

  • Sheeba SVP, Srivastava PK, Prasad SM (2011) Differential physiological and biochemical responses of two cyanobacteria Nostoc muscorum and Phormidium foveolarum against oxyfluorfen and UV-B radiation. Ecotoxicol Environ Saf 74:1981–1993

    Article  CAS  Google Scholar 

  • Singh AK, Singla P (2019) Biodegradation of diuron by endophytic Bacillus licheniformis strain SDS12 and its application in reducing diuron toxicity for green algae. Environ Sci Pollut Res 26:26972–26981

    Article  CAS  Google Scholar 

  • Singh DP, Khattar JIS, Kaur G, Singh Y (2016) Toxicological impact of herbicides on cyanobacteria. Annu Res Rev Biol 9:1–39

    Article  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:1–19

    Article  CAS  Google Scholar 

  • Singh S, Datta P (2005) Growth and survival potentials of immobilized diazotrophic cyanobacterial isolates exposed to common ricefield herbicides. World J Microbiol Biotechnol 21:441–446

    Article  CAS  Google Scholar 

  • Sterling TM (1994) Mechanisms of herbicide absorption across plant membranes and accumulation in plant cells. Weed Sci 42:263–276

    Article  CAS  Google Scholar 

  • Stewart BYWDP, Fitzgerald GP, Burris RH (1967) In situ studies on N2 fixation using the acetylene reduction technique. Proc Natl Acad Sci 58:2071–2078

    Article  CAS  Google Scholar 

  • Subramanian G, Shanmugasundaram S (1986) Influence of the herbicide 2, 4-D on nitrogen fixation and ammonia excretion by the cyanobacterium Anabaena. Proc Indian Natl Sci Acad Part B, Biol Sci 52:308–312

    CAS  Google Scholar 

  • Sun C, Chen S, Jin Y et al (2016) Effects of the herbicide imazethapyr on photosynthesis in PGR5-and NDH-deficient Arabidopsis thaliana at the biochemical, transcriptomic, and proteomic levels. J Agric Food Chem 64:4497–4504

    Article  CAS  Google Scholar 

  • Syiem MB, Singh AK, Rai AN (2017) N2-fixing cyanobacterial systems as biofertilizer. In: Singh J, Seneviratne G (eds) Agro-Environmental Sustainability. Springer, Cham, pp 43–61

    Chapter  Google Scholar 

  • Jervekani TM, Karimmojeni H, Razmjoo J (2020) Effects of light-dependent herbicides on growth and physiology of Salvia officinalis. Planta Daninha 38:1–10

    Article  Google Scholar 

  • Tiwari B, Kharwar S, Tiwari DN (2019) Pesticides and rice agriculture. In: Mishra AK, Tiwari DN, Rai AN (eds) Cyanobacteria, 1st edn. Elsevier, pp 303–325

    Chapter  Google Scholar 

  • Vaishampayan A (1984) Biological effects of a herbicide on a nitrogen-fixing cyanobacterium (blue-green alga): an attempt for introducing herbicide-resistance. New Phytol 96:7–11

    Article  CAS  Google Scholar 

  • Vonk JA, Kraak MHS (2020) Herbicide exposure and toxicity to aquatic primary producers. Rev Environ Contam Toxicol Continuation Residue Rev 250:119–171

    CAS  Google Scholar 

  • Win TT, Barone GD, Secundo F, Fu P (2018) Algal biofertilizers and plant growth stimulants for sustainable agriculture. Ind Biotechnol 14:203–211

    Article  Google Scholar 

  • Wolk CP (1965) Control of sporulation in a blue-green alga. Dev Biol 12:15–35

    Article  CAS  Google Scholar 

  • Yotsova EK, Stefanov MA, Dobrikova AG, Apostolova EL (2017) Different sensitivities of photosystem II in green algae and cyanobacteria to phenylurea and phenol-type herbicides: effect on electron donor side. Z Naturforsch Sect C J Biosci 72:315–324

    Article  CAS  Google Scholar 

  • Zakar T, Laczko-Dobos H, Toth TN, Gombos Z (2016) Carotenoids assist in cyanobacterial photosystem II assembly and function. Front Plant Sci 7:1–7

    Article  Google Scholar 

  • Zhang Q, Ye Y, Qu Q et al (2021) Enantioselective metabolomic modulations in Arabidopsis thaliana leaf induced by the herbicide dichlorprop. Sci Total Environ 797:149015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge University Grants Commission (UGC), Government of India, New Delhi, for granting fellowship under National Fellowship for higher studies of ST students being implemented by Ministry of Tribal Affairs, Government of India, and under UGC-NET/JRF; Sophisticated Analytical Instrumentation Facility NEHU, Shillong for SEM and TEM.

Funding

This study is funded by UGC, Government of India, New Delhi, under DRS III, vide Letter. F. 4-9/2015/DRS- III (SAP-II) dated 23/04/2015.

Author information

Authors and Affiliations

Authors

Contributions

Mayashree B Syiem conceptualized the theme of the manuscript, supervised the experiments, and edited the manuscript. Meguovilie Sachu and Balakyntiewshisha Lyngdoh Kynshi performed the experiments, analyzed the data, and wrote the original draft.

Corresponding author

Correspondence to Mayashree B. Syiem.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Robert Duran

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachu, M., Kynshi, B.L. & Syiem, M.B. A biochemical, physiological and molecular evaluation of how the herbicide 2, 4-dichlorophenoxyacetic acid intercedes photosynthesis and diazotrophy in the cyanobacterium Nostoc muscorum Meg 1. Environ Sci Pollut Res 29, 36684–36698 (2022). https://doi.org/10.1007/s11356-021-18000-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-18000-5

Keywords

Navigation