Skip to main content

Advertisement

Log in

Regulated strategies of cold-adapted microorganisms in response to cold: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

There are a large number of active cold-adapted microorganisms in the perennial cold environment. Due to their high-efficiency and energy-saving catalytic properties, cold-adapted microorganisms have become valuable natural resources with potential in various biological fields. In this study, a series of cold response strategies for microorganisms were summarized. This mainly involves the regulation of cell membrane fluidity, synthesis of cold adaptation proteins, regulators and metabolic changes, energy supply, and reactive oxygen species. Also, the potential of biocatalysts produced by cold-adapted microorganisms including cold-active enzymes, ice-binding proteins, polyhydroxyalkanoates, and surfactants was introduced, which provided a guidance for expanding its application values. Overall, new insights were obtained on response strategies of microorganisms to cold environments in this review. This will deepen the understanding of the cold tolerance mechanism of cold-adapted microorganisms, thus promoting the establishment and application of low-temperature biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data and materials in this review are available.

References

  • Abraham WP, Raghunandanan S, Gopinath V, Suryaletha K, Thomas S (2020) Deciphering the cold adaptive mechanisms in Pseudomonas psychrophila MTCC12324 isolated from the Arctic at 79° N. Curr Microbiol 77:2345–2355

    CAS  Google Scholar 

  • Adapa V, Ramya LN, Pulicherla KK, Rao KR (2014) Cold active pectinases: advancing the food industry to the next generation. Appl Biochem Biotechnol 172:2324–2337

    CAS  Google Scholar 

  • Amir M, Kumar V, Dohare R, Rehman MT, Hussain A, Alajmi MF, El-Seedi HR, Hassan HMA, Islam A, Ahmad F, Hassan MI (2019) Investigating architecture and structure-function relationships in cold shock DNA-binding domain family using structural genomics-based approach. Int J Biol Macromol 133:484–494

    CAS  Google Scholar 

  • Anburajan MB, Vinithkumar NV, Kirubagaran R, Dharani G (2019) Functional characterization of a major compatible solute in Deep Sea halophilic eubacteria of active volcanic Barren Island, Andaman and Nicobar Islands, India. Infect Genet Evol 73:261–265

    CAS  Google Scholar 

  • Al-Ghanayem AA, Joseph B (2020) Current prospective in using cold-active enzymes as eco-friendly detergent additive. Appl Microbiol Biot 104:2871–2884

    CAS  Google Scholar 

  • Åqvist J, Isaksen GV, Brandsdal BO (2017) Computation of enzyme cold adaptation. Nat Rev Chem 1:0051

    Google Scholar 

  • Arai T, Fukami D, Hoshino T, Kondo H, Tsuda S (2019) Ice-binding proteins from the fungus Antarctomyces psychrotrophicus possibly originate from two different bacteria through horizontal gene transfer. FEBS J 286:946–962

    CAS  Google Scholar 

  • Ayala-del-Rio HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G, Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P, Murray A, Thomashow M, Tiedje JM (2010) The genome sequence of Psychrobacter arcticus 273–4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76:2304–2312

    CAS  Google Scholar 

  • Balan SS, Kumar CG, Jayalakshmi S (2019) Physicochemical, structural and biological evaluation of Cybersan (trigalactomargarate), a new glycolipid biosurfactant produced by a marine yeast, Cyberlindnera saturnus strain SBPN-27. Process Biochem 80:171–180

    Google Scholar 

  • Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 5:697

    Google Scholar 

  • Bar Dolev M, Braslavsky I, Davies PL (2016) Ice-binding proteins and their function. Annu Rev Biochem 85:515–542

    CAS  Google Scholar 

  • Behzadnia A, Moosavi-Nasab M, Tiwari BK, Setoodeh P (2020) Lactobacillus plantarum-derived biosurfactant: ultrasound-induced production and characterization. Ultrason Sonochem 65:105037

    CAS  Google Scholar 

  • Bhatia RK, Ullah S, Hoque MZ, Ahmad I, Yang Y-H, Bhatt AK, Bhatia SK (2020) Psychrophiles: a source of cold-adapted enzymes for energy efficient biotechnological industrial processes. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104607

    Article  Google Scholar 

  • Białkowska A, Majewska E, Olczak A, Twarda-Clapa A (2020) Ice binding proteins: diverse biological roles and applications in different types of industry. Biomolecules 10:274

    Google Scholar 

  • Bikmullin AG, Nurullina LI, Garaeva NS, Klochkova EA, Blokhin DS, Golubev AA, Validov SZ, Khusainov IS, Usachev KS, Yusupov MM (2020) In vitro reconstitution of the S. aureus 30S ribosomal subunit and RbfA factor complex for structural studies. Biochemistry (mosc) 85:545–552

    CAS  Google Scholar 

  • Brandi A, Piersimoni L, Feto NA, Spurio R, Alix JH, Schmidt F, Gualerzi CO (2019) Translation initiation factor IF2 contributes to ribosome assembly and maturation during cold adaptation. Nucleic Acids Res 47:4652–4662

    CAS  Google Scholar 

  • Bruno S, Coppola D, di Prisco G, Giordano D, Verde C (2019) Enzymes from marine polar regions and their biotechnological applications. Mar Drugs 17:544

    CAS  Google Scholar 

  • Cai Q, Zhang B, Chen B, Zhu Z, Lin W, Cao T (2014) Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments. Mar Pollut Bull 86:402–410

    CAS  Google Scholar 

  • Cal AJ, Kibblewhite RE, Sikkema WD, Torres LF, Hart-Cooper WM, Orts WJ, Lee CC (2021) Production of polyhydroxyalkanoate copolymers containing 4-hydroxybutyrate in engineered Bacillus megaterium. Int J Biol Macromol 168:86–92

    CAS  Google Scholar 

  • Catone. MV, Jimena A. Ruiz, Mildred Castellanos, Daniel Segura, Guadalupe Espin, pez. NIL (2014) High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes. Plos one 9.

  • Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4:331–343

    CAS  Google Scholar 

  • Cha WH, Kim Y, Lee DW (2018) RNA interference of trehalose phosphate synthase inhibits metamorphosis and decreases cold tolerance in the diamondback moth, Plutella xylostella (L.). J Asia-Pac Entomo 21:1034–1039

  • Chasnitsky M, Braslavsky I (2019) Ice-binding proteins and the applicability and limitations of the kinetic pinning model. Philos Trans A Math Phys Eng Sci 377:20180391

    CAS  Google Scholar 

  • Chakraborty S, Ghosh M, Chakraborti JS, Kumar KS, Kokare C, Zhang L (2015) Biosurfactant produced from Actinomycetes nocardiopsis A17: characterization and its biological evaluation. Int J Biol Macromol 79:405–412

    CAS  Google Scholar 

  • Cha WH, Lee DW (2018) RNA interference of trehalose phosphate synthase inhibits metamorphosis and decreases cold tolerance in the diamondback moth, Plutella xylostella (L.). J Asia-Pac Entomo 21:1034–1039

    Google Scholar 

  • Chen MJ, Tang HY, Chiang ML (2017) Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1. Food Microbiol 66:20–27

    CAS  Google Scholar 

  • Cherpinski A, Torres-Giner S, Vartiainen J, Peresin MS, Lahtinen P, Lagaron JM (2018) Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose 25:1291–1307

    CAS  Google Scholar 

  • Cid FP, Rilling JI, Graether SP, Bravo LA, Mora Mde L, Jorquera MA (2016) Properties and biotechnological applications of ice-binding proteins in bacteria. FEMS Microbiol Lett 363.

  • Cibichakravarthy B, Abinaya S, Prabagaran SR (2017) Syntrophic association of termite gut bacterial symbionts with bifunctional characteristics of cellulose degrading and polyhydroxyalkanoate producing bacteria. Int J Biol Macromol 103:613–620

    CAS  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    CAS  Google Scholar 

  • Collins T, Margesin R (2019) Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biot. https://doi.org/10.1007/s00253-019-09659-5

    Article  Google Scholar 

  • Corradini D, Strekalova EG, Stanley HE, Gallo P (2013) Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose. Sci Rep 3:1218

    Google Scholar 

  • Covino R, Ballweg S, Stordeur C, Michaelis JB, Puth K, Wernig F, Bahrami A, Ernst AM, Hummer G, Ernst R (2016) A eukaryotic sensor for membrane lipid saturation. Mol Cell 63:49–59

    CAS  Google Scholar 

  • Cybulskia LE, Ballering J, Moussatova A, Inda ME, Vazqueza DB, WassenaarTA MD, Tieleman DP, Killian JA (2015) Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness. P Natl A Sci 112:6353–6358

    Google Scholar 

  • Czapski TR, Trun N (2014) Expression of csp genes in E. coli K-12 in defined rich and defined minimal media during normal growth, and after cold-shock. Gene 547:91–97

    CAS  Google Scholar 

  • Dammel CS, Noller HF (1995) Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev 9:626–637

    CAS  Google Scholar 

  • Daniela MS, Schulze PSC, Kiron V, Wijffels RH (2020) Production of carbohydrates, lipids and polyunsaturated fatty acids (PUFA) by the polar marine microalga Chlamydomonasmalina RCC2488. Algal Res 50:102016

    Google Scholar 

  • Dawson HM, Heal KR, Boysen AK, Carlson LT, Ingalls AE, Young JN (2020a) Potential of temperature- and salinity-driven shifts in diatom compatible solute concentrations to impact biogeochemical cycling within sea ice. Elem Sci Anth 8:25

    Google Scholar 

  • Dawson HM, Heal KR, Torstensson A, Carlson LT, Ingalls A, Young JN (2020b) Large diversity in nitrogen- and sulfur-containing compatible solute profiles in polar and temperate diatoms. Integr Comp Biol 60.

  • de Mendoza D, Pilon M (2019) Control of membrane lipid homeostasis by lipid-bilayer associated sensors: a mechanism conserved from bacteria to humans. Prog Lipid Res 76:100996

    Google Scholar 

  • De Santi C, Leiros HKS, Di Scala A, de Pascale D, Altermark B, Willassen NP (2016) Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp. Extremophiles 20:323–336

    Google Scholar 

  • Deininger CA, Mueller GM, Wolber PK (1988) Immunological characterization of ice nucleation proteins from Pseudomonas syringae, Pseudomonas fluorescens, and Erwinia herbicola. J Bacteriol 170:669–675

    CAS  Google Scholar 

  • Dhaulaniya AS, Balan B, Kumar M, Agrawal PK, Singh DK (2018) Cold survival strategies for bacteria, recent advancement and potential industrial applications. Aech Microbiol 201:1–16

    Google Scholar 

  • Diomandé SE, Chamot S, Antolinos V, Vasai F, Guinebretière MH, Bornard I, Nguyen-the C, Brillard BV, J, (2014) The CasKR two-component system is required for the growth of mesophilic and psychrotolerant Bacillus cereus strains at low temperatures. Appl Environ Microbiol 80:2493–2503

    Google Scholar 

  • Diomandé SE, Doublet B, Vasaï F, Guinebretière M-H, Broussolle V, Brillard J (2016) Expression of the genes encoding the CasKR two-component system and the DesA desaturase during Bacillus cereus cold adaptation. FEMS Microbiol Lett 16:174

    Google Scholar 

  • Dorman CJ (2005) DNA supercoiling and bacterial gene expression. Sci Progress 89:151–166

    Google Scholar 

  • Etok C, Akan O, Adegoke A (2015) Bioremediation of crude oil contaminated soils using surfactants and hydrocarbonoclastic bacteria. British Microbiol Res J 9:1–6

    Google Scholar 

  • Ernst R, Ejsing CS, Antonny B (2016) Homeoviscous adaptation and the regulation of membrane lipids. J Mol Biol 428:4776–4791

    CAS  Google Scholar 

  • Fendrihan S, Negoiţă TG (2012) Psychrophilic microorganisms as important source for biotechnological processes. In: Stan-Lotter H., Fendrihan S. (eds) Adaption Microb Life to Environ Extremes 133–172.

  • Fujii S, Nakasone K, Horikoshi K (1999) Cloning of two cold shock genes, cspA and cspG, from the deepsea psychrophilic bacterium Shewanella violacea strain DSS12. FEMS Microbiol Lett 178:123–128

    CAS  Google Scholar 

  • Furhan J, Awasthi P, Sharma S (2019) Biochemical characterization and homology modelling of cold-active alkophilic protease from Northwestern Himalayas and its application in detergent industry. Biocatal Agr Biotechnol 17:726–735

    Google Scholar 

  • Furuya T, Matsuoka D, Nanmori T (2014) Membrane rigidification functions upstream of the MEKK1-MKK2-MPK4 cascade during cold acclimation in Arabidopsis thaliana. FEBS Lett 588:2025–2030

    CAS  Google Scholar 

  • Furhana J, Awasthib P, Sharmaa S (2019) Biochemical characterization and homology modelling of cold-active alkophilic protease from Northwestern Himalayas and its application in detergent industry. Biocatal Agric Biotechnol 17:726–735

    Google Scholar 

  • Garnham CP, Campbell RL, Walker VK, Davies PL (2011) Novel dimeric β-helical model of an ice nucleation protein with bridged active sites. BMC Struct Biol 11:36

    CAS  Google Scholar 

  • Ge H, Fang L, Huang X, Wang J, Chen W, Liu Y, Zhang Y, Wang X, Xu W, He Q, Wang Y (2017) Translating divergent environmental stresses into a common proteome response through the histidine kinase 33 (Hik 33) in a model cyanobacterium. Mol Cell Proteomics 16:1258–1274

    CAS  Google Scholar 

  • Ghobakhlou AF, Johnston A, Harris L, Antoun H, Laberge S (2015) Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies. BMC Genomics 16:383

    Google Scholar 

  • Glodowsky AP, Ruberto LA, Martorell MM, Cormack WP, Levin GJ (2020) Cold active transglutaminase from antarctic Penicillium chrysogenum: partial purification, characterization and potential application in food technology. 29:, 101807.

  • Goh YS, Tan IK (2012) Polyhydroxyalkanoate production by antarctic soil bacteria isolated from Casey Station and Signy Island. Microbiol Res 167:211–219

    CAS  Google Scholar 

  • Goh YJ, Klaenhammer TR (2014) Insights into glycogen metabolism in Lactobacillus acidophilus: impact on carbohydrate metabolism, stress tolerance and gut retention. Microb Cell Fact 13:94

    Google Scholar 

  • Gomez-Gil E, Martin-Garcia R, Vicente-Soler J, Franco A, Vazquez-Marin B, Prieto-Ruiz F, Soto T, Perez P, Madrid M, Cansado J (2020) Stress-activated MAPK signaling controls fission Yeast actomyosin ring integrity by modulating formin For3 levels. Elife 9.

  • Goordial J, Raymond-Bouchard I, Zolotarov Y, de Bethencourt L, Ronholm J, Shapiro N, Woyke T, Stromvik M, Greer CW, Bakermans C, Whyte L (2015) Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost. Antarctica. FEMS Microbiol Ecol 92:154

    Google Scholar 

  • Graether SP, Jia Z (2001) Modeling Pseudomonas syringae ice-nucleation protein as a β-helical protein. Biophys J 80:1169–1173

    CAS  Google Scholar 

  • Grigore ME, Grigorescu RM, Iancu L, Ion RM, Zaharia C, Andrei ER (2019) Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review. J Biomater Sci Polym Ed 30:695–712

    CAS  Google Scholar 

  • Guo Q, Dong L, Wang P, Su Z, Liu X, Zhao W, Zhang X, Li S, Lu X, Ma P (2020) Using a phenotype microarray and transcriptome analysis to elucidate multi-drug resistance regulated by the PhoR/PhoP two-component system in Bacillus subtilis strain NCD-2. Microbiol Res 239:126557

    CAS  Google Scholar 

  • Guo Y, Wang Y, Zhang Z, Huang F, Chen S (2018) Physiological and transcriptomic insights into the cold adaptation mechanism of a novel heterotrophic nitrifying and aerobic denitrifying-like bacterium Pseudomonas indoloxydans YY-1. Int Biodeter Biodegr 134:16–24

    CAS  Google Scholar 

  • Gupta SK, Kataki S, Chatterjee S, Prasad RK, Datta S, Vairale MG, Sharma S, Dwivedi SK (2020) Cold adaptation in bacteria with special focus on cellulase production and its potential application. J Clean Prod 258:120351

    CAS  Google Scholar 

  • Han Y, Zhou D, Pang X, Zhang L, Song Y, Tong Z, Bao J, Dai E, Wang J, Guo Z, Zhai J, Du Z, Wang X, Wang J, Huang P, Yang R (2005) DNA microarray analysis of the heat- and cold-shock stimulons in Yersinia pestis. Microbes Infect 7:335–348

    CAS  Google Scholar 

  • Han SR, Kim DW, Kim B, Chi YM, Oh TJ (2019) Complete genome sequencing of Shigella sp PAMC 28760: identification of CAZyme genes and analysis of their potential role in glycogen metabolism for cold survival adaptation. Microb Pathogenesis 137:103759

    CAS  Google Scholar 

  • Hassan N, Anesio AM, Rafiq M, Holtvoeth J, Bull I, Haleem A, Shah AA, Hasan F (2020) Temperature driven membrane lipid adaptation in glacial psychrophilic bacteria. Front Microbiol 11:824

    Google Scholar 

  • He J, Cui Z, Ji X, Luo Y, Wei Y, Zhang Q (2019) Novel histidine kinase gene HisK2301 from Rhodosporidium kratochvilovae contributes to cold adaption by promoting biosynthesis of polyunsaturated fatty acids and glycerol. J Agric Food Chem 67:653–660

    CAS  Google Scholar 

  • He J, Yang Z, Hu B, Ji X, Wei Y, Lin L, Zhang Q (2015) Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis. Yeast 32:683–690

    CAS  Google Scholar 

  • Hingston PA, Truelstrup Hansen L, Pombert JF, Wang S (2019) Characterization of Listeria monocytogenes enhanced cold-tolerance variants isolated during prolonged cold storage. Int J Food Microbiol 306:108262

    CAS  Google Scholar 

  • Hoffmann T, Bremer E (2011) Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J Bacteriol 193:1552–1562

    CAS  Google Scholar 

  • Huang YJ, Swapna GVT, Rajan PK, Ke H, Xia B, Shukla K, Inouye M, Montelione GT (2003) Solution NMR structure of ribosome-binding factor A (RbfA), a cold-shock adaptation protein from Escherichia coli. J Mol Biol 327:521–536

    CAS  Google Scholar 

  • Huan R, Huang J, Liu D, Wang M, Liu C, Zhang Y, Yi C, Xiao D, He H (2019) Genome sequencing of Mesonia algae K4–1 reveals its adaptation to the arctic ocean. Front Microbiol 10:2812–2812

    Google Scholar 

  • Hudait A, Odendahl N, Qiu Y, Paesani F, Molinero V (2018) Ice-nucleating and antifreeze proteins recognize ice through a diversity of anchored clathrate and ice-like motifs. J Am Chem Soc 140:4905–4912

    CAS  Google Scholar 

  • Ji X, Chen G, Zhang Q, Wei LL, Y, (2015) Purification and characterization of an extracellular cold-adapted alkaline lipase produced by psychrotrophic bacterium Yersinia enterocolitica strain KM1. J Basic Microbiol 55:718–728

    CAS  Google Scholar 

  • Jia J, Chen Y, Jiang Y, Li Z, Zhao L, Zhang J, Tang J, Feng L, Liang C, Xu B, Gu P, Ye X (2015) Proteomic analysis of Vibrio metschnikovii under cold stress using a quadrupole Orbitrap mass spectrometer. Res Microbiol 166:618–625

    CAS  Google Scholar 

  • Jin B, Jeong KW, Kim Y (2014) Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus. Biochem Biophys Res Commun 451:402–407

    CAS  Google Scholar 

  • Jones PG, Inouye M (1996) RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Mol Microbiol 21:1207–1218

    Google Scholar 

  • Kajava AV, Lindow SE (1993) A model of the three-dimensional structure of ice nucleation proteins. J Mol Biol 232:709–717

    CAS  Google Scholar 

  • Kassmannhuber J, Mauri S, Rauscher M, Brait N, Lubitz W (2019) Freezing from the inside: ice nucleation in Escherichia coli and Escherichia coli ghosts by inner membrane bound ice nucleation protein InaZ. Atmos Chem Phys 1–21.

  • Kawahara H (2002) The structures and functions of ice crystal-controlling proteins from Bacteria. J Biosci Bioeng 94:492–496

    CAS  Google Scholar 

  • Kawahara H (2008) Cryoprotectants and ice-binding proteins. Springer. Berlin Heidelberg Chapter 14:229–246

    Google Scholar 

  • Keto-Timonen R, Hietala N, Palonen E, Hakakorpi A, Lindstrom M, Korkeala H (2016) Cold shock proteins: a minireview with special emphasis on Csp-family of Enteropathogenic Yersinia. Front Microbiol 7:1151

    Google Scholar 

  • Kim EJ, Do H, Lee JH, Lee SG, Kim HJ, Han SJ (2014) Production of antifreeze protein from antarctic bacterium Flavobacterium frigoris PS1 by using fed-batch culture of recombinant Pichia pastoris. KSBB J 29:303–306

    Google Scholar 

  • Kim J, Ha S, Park W (2018a) Expression and deletion analyses of cspE encoding cold-shock protein E in Acinetobacter oleivorans DR1. Res Microbiol 169:244–253

    CAS  Google Scholar 

  • Kim H, Park AK, Lee JH, Kim H-W, Shin SC (2018b) Complete genome sequence of Colwellia hornerae PAMC 20917, a cold-active enzyme-producing bacterium isolated from the Arctic Ocean sediment. Mar Genom 41:54–56

    Google Scholar 

  • Kim HK (1987) Xanthomonas campestris pv. translucens strains active in ice nucleation. Plant Dis 71:994–997

    Google Scholar 

  • Kloska A, Cech GM, Sadowska M, Krause K, Szalewska-Pałasz A, Olszewski P (2020) Adaptation of the marine bacterium Shewanella baltica to low temperature stress. Int J Mol Sci 21:4388

    Google Scholar 

  • Kondo H, Mochizuki K, Bayer-Giraldi M (2018) Multiple binding modes of a moderate ice-binding protein from a polar microalga. Phys Chem Chem Phys 20:25295–25303

    CAS  Google Scholar 

  • Kourilova X, Pernicova I, Sedlar K, Musilova J, Sedlacek P, Kalina M, Koller M, Obruca S (2020) Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelellathermodepolymerans from xylose rich substrates. Bioresource Technol 315:123885

    CAS  Google Scholar 

  • Kourmentza C, Costa J, Azevedo Z, Servin C, Grandfils C, Freitas VD, Reis MAM (2018) Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresource Technol 247:829–837

    CAS  Google Scholar 

  • Králová S (2017) Role of fatty acids in cold adaptation of Antarctic psychrophilic Flavobacterium spp. Syst Appl Microbiol 40:329–333

    Google Scholar 

  • Kumar P, Jun HB, Kim BS (2018) Co-production of polyhydroxyalkanoates and carotenoids through bioconversion of glycerol by Paracoccus sp. strain LL1. Int J Biol Macromol 107:2552–2558

    CAS  Google Scholar 

  • Kumar R, Acharya V, Mukhia S, Singh D, Kumar S (2019) Complete genome sequence of Pseudomonas frederiksbergensis ERDD5:01 revealed genetic bases for survivability at high altitude ecosystem and bioprospection potential. Genomics 111:492–499

    CAS  Google Scholar 

  • Kuramochi M, Takanashi C, Yamauchi A, Doi M, Mio K, Tsuda S, Sasaki YC (2019) Expression of ice-binding proteins in Caenorhabditis elegans improves the survival rate upon cold shock and during freezing. Sci Rep 9:6246

    Google Scholar 

  • Lauro FM, Tran K, Vezzi A, Vitulo N, Valle G, Bartlett DH (2008) Large-scale transposon mutagenesis of Photobacterium profundum SS9 reveals new genetic loci important for growth at low temperature and high pressure. J Bacteriol 190:1699–1709

    CAS  Google Scholar 

  • Lee YP, Babakov A, de Boe B, Zuther E, Hincha DK (2012) Comparison of freezing tolerance, compatible solutes and polyamines in geographically diverse collections of Thellungiella sp and Arabidopsis thaliana accessions. BMC Plant Biol 12:131

    Google Scholar 

  • Lee JH, Lee SG, Do H, Park JC, Kim E, Choe YH, Han SJ, Kim HJ (2013) Optimization of the pilot-scale production of an ice-binding protein by fed-batch culture of Pichia pastoris. Appl Microbiol Biotechnol 97:3383–3393

    CAS  Google Scholar 

  • Li T, Zhang W, Hao J, Sun M, Lin SX (2019) Cold-active extracellular lipase: expression in Sf9 insect cells, purification, and catalysis. 21: e00295.

  • Li Z, Yang J, Loh XJ (2016) Polyhydroxyalkanoates: opening doors for a sustainable future. Npg Asia Mater 8:e265

    CAS  Google Scholar 

  • Lindae A, Eberle RJ, Caruso IP, Coronado MA, de Moraes FR, Azevedo V, Arni RK (2015) Expression, purification and characterization of cold shock protein A of Corynebacterium pseudotuberculosis. Protein Expr Purif 112:15–20

    CAS  Google Scholar 

  • Ling ML, Wex H, Grawe S, Jakobsson J, Löndahl J, Hartmann S, Finster K, Boesen T, Šantl-Temkiv T (2018) Effects of ice nucleation protein repeat number and oligomerization level on ice nucleation activity. J Geophys Res Atmos 123:1802–1810

    CAS  Google Scholar 

  • Liu C, Chaudhry MT, Zhao D, Lin T, Tian Y, Fu J (2019) Heat shock protein 70 protects the quail cecum against oxidant stress, inflammatory injury, and microbiota imbalance induced by cold stress. Poult Sci 98:5432–5445

    CAS  Google Scholar 

  • Liu Y, Tan X, Cheng H, Gong J, Zhang Y, Wang D, Ding W (2020) The cold shock family gene cspD3 is involved in the pathogenicity of Ralstoniasolanacearum CQPS-1 to tobacco. Microb Pathog 142:104091

    CAS  Google Scholar 

  • Liu S, Ma Y, Zheng Y, Zhao W, Zhao X, Luo T, Zhang J, Yang Z (2020b) Cold-stress response of probiotic Lactobacillus plantarum K25 by iTRAQ proteomic analysis. J Microbiol Biotechnol 30:187–195

    CAS  Google Scholar 

  • López NI, Pettinari MJ, Nikel PI, Méndez BS (2015) Polyhydroxyalkanoates: much more than biodegradable plastics. Adv Appl Microbiol 93:73–106

    Google Scholar 

  • Lorv J, Rose DR, Glick BR (2014) Bacterial ice crystal controlling proteins. Scientifica 2014:976895

    Google Scholar 

  • Los DA (2004) The effect of low-temperature-induced DNA supercoiling on the expression of the desaturase genes in Synechocystis. Cell Mol Biol 50:605–612

    CAS  Google Scholar 

  • Ma Y, Wang XuW, Liu X, Gao X, Zhang Y (2017) Stationary phase-dependent accumulation of ectoine is an efficient adaptation strategy in Vibrio anguillarum against cold stress. Microbiol Res 205:8–18

    CAS  Google Scholar 

  • Maharana A, Ray P (2015) A novel cold-active lipase from psychrotolerant Pseudomonas sp. AKM-L5 showed organic solvent resistant and suitable for detergent formulation. J Mol Catal B Enzym 120:173–178

    CAS  Google Scholar 

  • Maikova A, Zalutskaya Z, Lapina T, Ermilova E (2016) The HSP70 chaperone machines of Chlamydomonas are induced by cold stress. J Plant Physiol 204:85–91

    CAS  Google Scholar 

  • Malavenda R, Rizzo C, Michaud L, Gerçe B, Bruni V, Syldatk C, Hausmann R, Lo Giudice A (2015) Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biol 38:1565–1574

    Google Scholar 

  • Mangiagalli M, Bar-Dolev M, Kaleda A, Natalello A, Brocca S, De Pascale D, Pucciarelli S, Braslavsky I, Lotti M (2016) Identification and functional analysis of a novel Antarctic ice binding protein. New Biotechnol 33.

  • Mangiagalli M, Bar-Dolev M, Tedesco P, Natalello A, Kaleda A, Brocca S, de Pascale D, Pucciarelli S, Miceli C, Braslavsky I, Lotti M (2017) Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria. FEBS J 284:163–177

    CAS  Google Scholar 

  • Mangiagalli M, Brocca S, Orlando M, Lotti M (2020) The “cold revolution”. Present and future applications of cold-active enzymes and ice-binding proteins. N Biotechnol 55:5–11

    CAS  Google Scholar 

  • Mao Y, Yin Y, Zhang L, Alias SA, Gao B, Wei D (2015) Development of a novel Aspergillus uracil deficient expression system and its application in expressing a cold-adapted α-amylase gene from Antarctic fungi Geomyces pannorum. Process Biochem 50:1581–1590

    CAS  Google Scholar 

  • Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565

    CAS  Google Scholar 

  • Margesin R, Collins T (2019) Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biot 103.

  • Marx JC, Collins T, D’Amico S, Feller G, Gerday C (2007) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol (NY) 9:293–304

    CAS  Google Scholar 

  • María C, Mansilla MDD (2005) The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch Microbiol 183:229–235

    Google Scholar 

  • Mbye M, Baig MA, Abuqamar S, El-Tarabily KA, Obaid R, Osaili T, Al-Nabulsi A, Turner M, Shah N, Ayyash M (2020) Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Compr Rev Food Sci F 19:1110–1124

    Google Scholar 

  • Mironov KS, Sidorov RA, Trofimova MS, Bedbenov VS, Tsydendambaev VD, Allakhverdiev SI, Los DA (2012) Light-dependent cold-induced fatty acid unsaturation, changes in membrane fluidity, and alterations in gene expression in Synechocystis. Biochim Biophys Acta 1817:1352–1359

    CAS  Google Scholar 

  • Mocali S, Chiellini C, Fabiani A, Decuzzi S, de Pascale D, Parrilli E, Tutino ML, Perrin E, Bosi E, Fondi M, Lo Giudice A, Fani R (2017) Ecology of cold environments: new insights of bacterial metabolic adaptation through an integrated genomic-phenomic approach. Sci Rep 7:839

    Google Scholar 

  • Mohandas SP, Linu B, Jayanath G, Anoop BS, Rosamma P, Sonia CS, Bright SIS (2018) Biosynthesis and characterization of polyhydroxyalkanoate from marine Bacillus cereus MCCB 281 utilizing glycerol as carbon source. Int J Biol Macromol 119:S0141813018316507

    Google Scholar 

  • Moyer, C. and R. Morita (2007) Psychrophiles and psychrotrophs.

  • Morigasaki S, Chin LC, Hatano T, Emori M, Iwamoto M, Tatebe H, Shiozaki K (2019) Modulation of TOR complex 2 signaling by the stress-activated MAPK pathway in Fission Yeast. J Cell Sci 132:236133

    Google Scholar 

  • Morita, (1975) Psychrophilic bacteria. Bacteriolgical Rev 39:144–167

    CAS  Google Scholar 

  • Muneer F, Rasul I, Azeem F, Siddique MH, Zubair M, Habibullah N (2020) PHA is a polyester compound stored in microbial cells, which has excellent application prospects in bioplastic production, health care and medicine, and biofuels. J Polym Environ 28:2301–2323

    CAS  Google Scholar 

  • Najle SR, Inda ME, de Mendoza D, Cybulski LE (2009) Oligomerization of Bacillus subtilis DesR is required for fine tuning regulation of membrane fluidity. Biochim Biophys Acta 1790:1238–1243

    CAS  Google Scholar 

  • Nayak NS, Purohit MS, Tipre DR, Dave SR (2020) Biosurfactant production and engine oil degradation by marine halotolerant Bacillus licheniformis LRK1. Biocatal Agr Biotechnol 29:101808

    Google Scholar 

  • Israni N, Shivakumar S (2020) Polyhydroxyalkanoate (PHA) biosynthesis from directly valorized ragi husk and sesame oil cake by Bacillus megaterium strain Ti3: statistical optimization and characterization. Int J Biol Macromol 148:20–30

    CAS  Google Scholar 

  • Nikolaivits E, Dimarogona M, Fokialakis N, Topakas E (2017) Marine-derived biocatalysts: importance, accessing, and application in aromatic pollutant bioremediation. Front Microbiol 8:265

    Google Scholar 

  • Panoff J, Thammavongs B, Guéguen M, Boutibonnes P (1998) Cold stress responses in mesophilic bacteria. Cryobiology 36:75–83

    CAS  Google Scholar 

  • Pan J, Zha Z, Zhang P, Chen R, Ye C, Ye T (2017) Serine/threonine protein kinase PpkA contributes to the adaptation and virulence in Pseudomonas aeruginosa. Microb Pathog 113:5–10

    CAS  Google Scholar 

  • Parra LP, Espina G, Devia J, Salazar O, Andrews B, Asenjo JA (2015) Identification of lipase encoding genes from Antarctic seawater bacteria using degenerate primers: expression of a cold-active lipase with high specific activity. Enzyme Microb Technol 68:56–61

    CAS  Google Scholar 

  • Pele MA, Ribeaux DR, Vieira ER, Souza AF, Luna MA, Rodríguez DM, Andrade RF, Silva CS, Barreto-Bergter E, Santiago A, Takaki GC (2018) Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil[J]. Electron J Biotechnol 38:40–48

    Google Scholar 

  • Pereira JQ, Ambrosini A, Passaglia LMP, Brandelli A (2017) A new cold-adapted serine peptidase from Antarctic Lysobacter sp. A03: insights about enzyme activity at low temperatures. Int J Biol Macromol 103:854–862

    CAS  Google Scholar 

  • Perez-Zabaleta M, Atasoy M, Khatami K, Eriksson E, Cetecioglu Z (2021) Bio-based conversion of volatile fatty acids from waste streams to polyhydroxyalkanoates using mixed microbial cultures. Bioresource Technol 323:124604

    CAS  Google Scholar 

  • Perfumo A, Banat IM, Marchant R (2018) Going green and cold: biosurfactants from low-temperature environments to biotechnology applications. Trends Biotechnol 36:277–289

    CAS  Google Scholar 

  • Porrini L, Cybulski LE, Altabe SG, Mansilla MC, Mendoza DD (2014) Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor. MicrobiologyOpen 3:213–224

    CAS  Google Scholar 

  • Qiong W, Ran Z, Supervision Q (2019) Effect of cold temperature on membrane lipid oxidation and active oxygen species of Kiwifruit under vibratory stress. Sci Technol Food Industry.

  • Qiu X, Xie X, Meesapyodsuk D (2020) Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res 79:101047

    CAS  Google Scholar 

  • Rafiq M, Hassan N, Rehman M, Hasan F (2019) Adaptation mechanisms and applications of psychrophilic fungi. Fungi in Extreme Environ: Ecol Role and Biotech Significance 157–174.

  • Raymond-Bouchard I, Chourey K, Altshuler I, Iyer R, Hettich RL, Whyte LG (2017) Mechanisms of subzero growth in the cryophile Planococcus halocryophilus determined through proteomic analysis. Environ Microbiol 19:4460–4479

    CAS  Google Scholar 

  • Raymond-Bouchard I, Goordial J, Zolotarov Y, Ronholm J, Stromvik M, Bakermans C, Whyte LG (2018a) Conserved genomic and amino acid traits of cold adaptation in subzero-growing Arctic permafrost bacteria. FEMS Microbiol Ecol 94.

  • Raymond-Bouchard I, Tremblay J, Altshuler I, Greer CW, Whyte LG (2018b) Comparative transcriptomics of cold growth and adaptive features of a Eury- and Steno-Psychrophile. Front Microbiol 9:1565

    Google Scholar 

  • Reis CB, Morandini LM, Bevilacqua CB, Bublitz F, Ugalde G, Mazutti MA, Jacques RJ (2018) First report of the production of a potent biosurfactant with α, β-trehalose by Fusarium fujikuroi under optimized conditions of submerged fermentation. Braz J Microbiol 49:185–192

    Google Scholar 

  • Ritter AC, Santi L, Vannini L, Beys-da-Silva WO, Gozzi G, John Y, Ragni L (2018) A Brandelli. Comparative proteomic analysis of foodborne Salmonella Enteritidis SE86 subjected to cold plasma treatment. Food Microbiol 76:310–318

    CAS  Google Scholar 

  • Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9:547

    Google Scholar 

  • Rodriguez Gamero JE, Favaro L, Pizzocchero V, Lomolino G, Basaglia M, Casella S (2018) Nuclease expression in efficient polyhydroxyalkanoates-producing bacteria could yield cost reduction during downstream processing. Bioresour Technol 261:176–181

    CAS  Google Scholar 

  • Romero AM, Jorda T, Rozes N, Martinez-Pastor MT, Puig S (2018) Regulation of yeast fatty acid desaturase in response to iron deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 1863:657–668

    CAS  Google Scholar 

  • Rosana ARR, Whitford DS, Migur A, Steglich C, Kujat-Choy SL, Hess WR, Owttrim GW (2020) RNA helicase–regulated processing of the Synechocystis rimO–crhR operon results in differential cistron expression and accumulation of two sRNAs. J Biol Chem 295

  • Russo R, Giordano D, Riccio A, di Prisco G, Verde C (2010) Cold-adapted bacteria and the globin case study in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mar Genomics 3:125–131

    Google Scholar 

  • Saita E, Albanesi D, de Mendoza D (2016) Sensing membrane thickness: lessons learned from cold stress. Biochim Biophys Acta 1861:837–846

    CAS  Google Scholar 

  • Sanchez AC, Ravanal MC, Andrews BA, Asenjo JA (2019) Heterologous expression and biochemical characterization of a novel cold-active α-amylase from the Antarctic bacteria Pseudoalteromona sp. 2–3. Protein Expres Purif 155:78–85

    CAS  Google Scholar 

  • Santiago M, Ramirez-Sarmiento CA, Zamora RA, Parra LP (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 7:1408

    Google Scholar 

  • Santos DK, Meira HM, Rufino RD, Luna JM, Sarubbo LA (2016) Biosurfactant production from Candida lipolytica in bioreactor and evaluation of its toxicity for application as a bioremediation agent. Process Biochem 54:20–27

    Google Scholar 

  • Sahay S, Chouhan D (2018) Study on the potential of cold-active lipases from psychrotrophic fungi for detergent formulation. J Genet Biotechnol 16:319–325

    Google Scholar 

  • Sarmiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: industrial relevance and current trends. Front Bioeng Biotechnol 3:148

    Google Scholar 

  • Sasaki K, Kim MH, Imai R (2007) Arabidopsis cold shock domain protein 2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem Biophys Res Commun 364:633–638

    CAS  Google Scholar 

  • Schopf FH, Huber EM, Dodt C, Lopez A, Biebl MM, Rutz DA, Muhlhofer M, Richter G, Madl T, Sattler M, Groll M, Buchner J (2019) The Co-chaperone Cns1 and the recruiter protein hgh1 link Hsp90 to translation elongation via chaperoning elongation Factor 2. Mol Cell 74:73–87

    CAS  Google Scholar 

  • Sekhon RKK, Rahman PK (2014) Rhamnolipid biosurfactants-past, present, and future scenario of global market. Front Microbiol 5:454

    Google Scholar 

  • Sharma B, Sahoo D, Deswal R (2018) Single-step purification and characterization of antifreeze proteins from leaf and berry of a freeze-tolerant shrub seabuckthorn (Hippophae rhamnoides). J Sep Sci 41:3938–3945

    CAS  Google Scholar 

  • Sheu DS, Chen YL, Jhuang WJ, Chen HY, Jane WN (2018) Cultivation temperature modulated the monomer composition and polymer properties of polyhydroxyalkanoate synthesized by Cupriavidus sp. L7L from levulinate as sole carbon source. Int J Biol Macromol 118:1558–1564

    CAS  Google Scholar 

  • Shimura Y, Shiraiwa Y, Suzuki I (2012) Characterization of the subdomains in the N-terminal region of histidine kinase Hik33 in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 53:1255

    CAS  Google Scholar 

  • Sinetova MA, Los DA (2016) New insights in cyanobacterial cold stress responses: genes, sensors, and molecular triggers. Biochim Biophys Acta 1860:2391–2403

    CAS  Google Scholar 

  • Singh AK, Sharma P (2019) Disinfectant-like activity of lipopeptide biosurfactant produced by Bacillus tequilensis strain SDS2. Colloid surface B 185:110514

    Google Scholar 

  • Smith MR, Khera E, Wen F (2015) Engineering novel and Improved biocatalysts by cell surface display. Ind Eng Chem Res 54:4021–4032

    CAS  Google Scholar 

  • Son H, Lee J, Lee YW (2012) Mannitol induces the conversion of conidia to chlamydospore-like structures that confer enhanced tolerance to heat, drought, and UV in Gibberella zeae. Microbiol Res 167:608–615

    CAS  Google Scholar 

  • Söderholm H, DermanY LM, Korkeala H (2015) Functional csdA is needed for effective adaptation and initiation of growth of Clostridium botulinum ATCC 3502 at suboptimal temperature. Int J Food Microbiol 208:51–57

    Google Scholar 

  • Souza TV, Araujo JN, da Silva VM, Liberato MV, Pimentel AC, Alvarez TM, Squina FM, Garcia W (2016) Chemical stability of a coldactive cellulase with high tolerance toward surfactants and chaotropic agent. Biotechnol Rep 9:1–8

    Google Scholar 

  • Sproessler BG (1993): Milling and baking. https://doi.org/10.1016/B978-0-08-057145-4.50018-9

  • Ta MM, Hashim NHF, Najimudin N, Mahadi NM, Bakar FDA, Murad AMA (2017) Large-scale production of Glaciozyma antarctica Antifreeze Protein 1 (Afp1) by Fed-Batch Fermentation of Pichia pastoris. Arab J Sci Eng 43:133–141

    Google Scholar 

  • Tan GY, Chen CL, Li L, Ge L, Wang L, Razaad I, Li Y, Zhao L, Mo Y, Wang JY (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6:706–754

    Google Scholar 

  • Tan IK, Foong CP, Tan HT, Hui L, Sudesh K (2020) Polyhydroxyalkanoate (PHA) synthase genes and PHA-associated gene clusters in Pseudomonas spp. and Janthinobacterium spp. isolated from Antarctica. J Biotechnol 313:18–28

    CAS  Google Scholar 

  • Tang Y, Wu P, Jiang S, Selvaraj JN, Yang S, Zhang G (2019) A new cold-active and alkaline pectate lyase from Antarctic bacterium with high catalytic efficiency. Appl Microbiol Biot 103:5231–5241

    CAS  Google Scholar 

  • Tribelli PM, Lopez NI (2018): Reporting key features in cold-adapted bacteria. Life (Basel) 8.

  • Trinquier A, Durand S, Braun F, Condon C (2020) Regulation of RNA processing and degradation in bacteria. Biochim Biophys Acta Gene Regul Mech 1863:194505

    CAS  Google Scholar 

  • Tripathy S, Sen R, Padhi SK, Sahu DK, Nandi S, Mohanty S, Maiti NK (2014) Survey of the transcriptome of Brevibacillus borstelensis exposed to low temperature shock. Gene 550:207–213

    CAS  Google Scholar 

  • Trudgeon B, Dieser M, Balasubramanian N, Messmer M, Foreman CM (2020) Low-temperature biosurfactants from polar microbes. Microorganisms 8:1183

  • Vanderveer TL, Choi J, Miao D, Walker VK (2014) Expression and localization of an ice nucleating protein from a soil bacterium, Pseudomonas borealis. Cryobiology 69:110–118

    CAS  Google Scholar 

  • Walker D, Romero P, Hoyos AD, Correal E (2008) Seasonal changes in cold tolerance, water relations and accumulation of cations and compatible solutes in Atriplex halimus L. Environ Exp Bot 64:217–224

    CAS  Google Scholar 

  • Wang B, Chai H, Zhong Y, Shen Y, Yang W, Chen J, Xin Z, Shi H (2020) The DEAD-box RNA helicase SHI2 functions in repression of salt-inducible genes and regulation of cold-inducible gene splicing. J Exp Bot 71:1598–1613

    CAS  Google Scholar 

  • Wang B, Barahona M, Buck M, Schumacher J (2013) Rewiring cell signalling through chimaeric regulatory protein engineering. Biochem Soc Trans 41:1195–1200

    Google Scholar 

  • Wang Y, Oberley LW, Murhammer DW (2001) Antioxidant defense systems of two lipidopteran insect cell lines. Free Radical Bio Med 30:1254–1262

    CAS  Google Scholar 

  • Wee MYJ, Abd. Murad AM, Abu Bakar FD, Low KO, Md Illias R, (2019) Expression of xylanase on Escherichia coli using a truncated ice nucleation protein of Erwinia ananas (InaA). Process Biochem 78:25–32

    CAS  Google Scholar 

  • Wong CM, Boo SY, Voo CL, Zainuddin N, Najimudin N (2019) A comparative transcriptomic analysis provides insights into the cold-adaptation mechanisms of a psychrophilic yeast, Glaciozyma antarctica PI12. Polar Biol 42:55

    Google Scholar 

  • Xikeranmu Z, Abdunasir M, Ma J, Tusong K, Liu X (2019) Characterization of two copper/zinc superoxide dismutases (Cu/Zn-SODs) from the desert beetle Microdera punctipennis and their activities in protecting E. coli cells against cold. Cryobiology 87:15–27

    CAS  Google Scholar 

  • Xu L, Wang L, Peng J, Li F, Wu L, Zhang B, Lv M, Zhang J, Gong Q, Zhang R, Zuo X, Zhang Z, Wu J, Tang Y, Shi Y (2017) Insights into the structure of dimeric RNA helicase CsdA and indispensable role of its C-Terminal regions. Structure 25:1795–1808

    CAS  Google Scholar 

  • Yang SP, Xie J, Cheng Y, Zhang Z, Zhao Y, Qian YF (2020) Response of Shewanella putrefaciens to low temperature regulated by membrane fluidity and fatty acid metabolism. Lwt 117.

  • Yang Y, Khoo WJ, Zheng Q, Chung HJ, Yuk HG (2014) Growth temperature alters Salmonella Enteritidis heat/acid resistance, membrane lipid composition and stress/virulence related gene expression. Int J Food Microbiol 172:102–109

    CAS  Google Scholar 

  • Zelko IN, MarianiI TJ, Folz RJ (2002) Superoxide dismutase multigene family a comparison of the CuZn-SOD(SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biol Med 33:337–349

    CAS  Google Scholar 

  • Zhang C, Guo W, Wang Y, Chen X (2018a) The complete genome sequence of Colwellia sp. NB097-1 reveals evidence for the potential genetic basis for its adaptation to cold environment. Mar Genomics 37:54–57

    CAS  Google Scholar 

  • Zhang F, Zhu XQ, Guo YL, Wan XQ, Lin TT, Chen QB, Liu M, Liu PQ (2014) Ultrastructural changes and dynamic expressions of FAD7, Cu/Zn-SOD, and Mn-SOD in Neosinocalamus affinis under cold stress. Russ J Plant Physiol 61:760–767

    CAS  Google Scholar 

  • Zhang Y, Burkhardt DH, Rouskin S, Li GW, Weissman JS, Gross CA (2018b) A stress response that monitors and regulates mRNA structure is central to cold shock adaptation. Mol Cell 70:274–286

    CAS  Google Scholar 

  • Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233

    Google Scholar 

  • Zhang Z, Tang R, Bian L, Mei M, Li C, Ma X, Yi L, Ma L (2016) Surface immobilization of human arginase-1 with an engineered ice nucleation protein display System in E coli. PLoS One 11:e0160367

    Google Scholar 

  • Zhang Q, Yang Z, Wei ZR, Y, Lin L, Ji X, (2015) Correlation of polyunsaturated fatty acids and cold adaptation of Mortierella isabelline. J Kunming U Sci Technol 40:68–73

    CAS  Google Scholar 

  • Zhao GY, Zhou MY, Zhao HL, Chen XL, Xie BB, Zhang XY, He HL, Zhou BC, Zhang YZ (2012) Tenderization effect of cold-adapted collagenolytic protease MCP-01 on beef meat at low temperature and its mechanism. Food Chem 134:1738–1744

    CAS  Google Scholar 

  • Zorina AA, Bedbenov VS, Novikova GV, Panichkin VB, Los’ DA, (2014) Involvement of serine/threonine protein kinases in the cold stress response in the cyanobacterium Synechocystis sp. PCC 6803: functional characterization of SpkE protein kinase. Mol Biol 48:390–398

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Research and Development Project, the Key Laboratory of Straw Biology and Utilization, The Ministry of Education.

Funding

This study was funded by the Technological innovation platform of straw comprehensive utilization in Jilin province (2014) C–1 and the State Key Research and Development Project (2017YFD0501000).

Author information

Authors and Affiliations

Authors

Contributions

Guang Chen developed topics for the review. Lijun Shen wrote the first draft of the paper. Sitong Zhang modified the content and language for this review.

Corresponding authors

Correspondence to Sitong Zhang or Guang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Diane Purchase.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Zhang, S. & Chen, G. Regulated strategies of cold-adapted microorganisms in response to cold: a review. Environ Sci Pollut Res 28, 68006–68024 (2021). https://doi.org/10.1007/s11356-021-16843-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16843-6

Keywords

Navigation