Skip to main content

Advertisement

Log in

Gridded distribution of total suspended particulate matter (TSP) and their chemical characterization over Delhi during winter

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present study, total suspended particulate matter (TSP) samples were collected at 47 different sites (47 grids of 5 × 5 km2 area) of Delhi during winter (January–February 2019) in campaign mode. To understand the spatial variation of sources, TSP samples were analyzed for chemical compositions including carbonaceous species [organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC)], water-soluble total nitrogen (WSTN), water-soluble inorganic nitrogen (WSIN), polycyclic aromatic hydrocarbons (16 PAHs), water-soluble inorganic species (WSIS) (F, Cl, SO42−, NO2, NO3, PO43−, NH4+, Ca2+, Mg2+, Na+, and K+), and major and minor trace elements (B, Na, Mg, Al, P, S, Cl, K, Ca, Ti, Fe, Zn, Cr, Mn, Cu, As, Pd, F, and Ag). During the campaign, the maximum concentration of several components of TSP (996 μg/m3) was recorded at the Rana Pratap Bagh area, representing a pollution hotspot of Delhi. The maximum concentrations of PAHs were recorded at Udhyog Nagar, a region close to heavily loaded diesel vehicles, small rubber factories, and waste burning areas. Higher content of Cl and Cl/Na+ ratio (>1.7) suggests the presence of nonmarine anthropogenic sources of Cl over Delhi. Minimum concentrations of OC, EC, WSOC, PAHs, and WSIS in TSP were observed at Kalkaji, representing the least polluted area in Delhi. Enrichment factor <5.0 at several locations and a significant correlation of Al with Mg, Fe, Ti, and Ca and C/N ratio indicated the abundance of mineral/crustal dust in TSP over Delhi. Principal component analysis (PCA) was also performed for the source apportionment of TSP, and extracted soil dust was found to be the major contributor to TSP, followed by biomass burning, open waste burning, secondary aerosol, and vehicular emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal T, Khillare PS, Shridhar V, Ray S (2009) Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. J Hazard Mater 163(2):1033–1039

    CAS  Google Scholar 

  • Agnihotri R, Mandal TK, Karapurkar S, Naja M, Gadi R, Ahammmed YN, Kumar A, Saud T, Saxena M (2011) Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean. Atmos Environ 45(17):2828–2835

    CAS  Google Scholar 

  • Air Quality Monitoring Network (2008) Central pollution control board, ministry of environment & forests. Website: http://www.cpcb.nic.in. Accessed August 2009

  • Alebić-Juretić A (2015) Airborne polycyclic aromatic hydrocarbons in suspended particulates from the urban atmosphere of Rijeka, Croatia. Polycycl Aromat Compd 35(1):91–101

    Google Scholar 

  • Anju, Banerjee DK (2003) Heavy metal levels and solid phase speciation in street dusts of Delhi. India. Environ Pollut 123:95–105

    Google Scholar 

  • Arditsoglou A, Samara C (2005) Levels of total suspended particulate matter and major trace elements in Kosovo: a source identification and apportionment study. Chemosphere 59:669–678

    CAS  Google Scholar 

  • Astrup T, Rosenblad C, Trapp S, Christensen TH (2005) Chromium release from waste incineration air pollution-control residues. Environ Sci Technol 39:3321–3329

    CAS  Google Scholar 

  • Aucélio RO, De Souza RM, De Campos RC, Miekeley N, Porto da Silveira CL (2007) The determination of trace metals in lubricating oils by atomic spectrometry. Spectrochim Acta B 62:952–961

    Google Scholar 

  • Balachandran S, Meena BR, Khillare PS (2000) Particle size distribution and its elemental composition in the ambient air of Delhi. Environ Int 26:49–54

    CAS  Google Scholar 

  • Balakrishnaiah G, Raghavendra Kumar K, Suresh Kumar Reddy B, Swamulu C, Rama Gopal K, Reddy RR, Reddy LSS, Nazeer Ahammed Y, Narasimhulu K,  KrishnaMoorthy K, Suresh Babu S (2011) Anthropogenic impact on the temporal variations of black carbon and surface aerosol mass concentrations at a tropical semi-arid station in southeastern region of India. J Asian Earth Sci 42(6):1297–1308

  • Banerjee T, Murari V, Kumar M, Raju MP (2015) Source apportionment of airborne particulates through receptor modelling: Indian scenario. Atmos Res 164:167–187

    Google Scholar 

  • Behera SN, Sharma M (2010) Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Sci Total Environ 408(17):3569–3575

    CAS  Google Scholar 

  • Bhowmik HS, Naresh S, Bhattu D, Rastogi N, Prévôt ASH, Tripathib SN (2020) Temporal and spatial variability of carbonaceous species (EC; OC; WSOC and SOA) in PM2.5 aerosol over five sites of Indo-Gangetic Plain. Atmos Pollu Res. https://doi.org/10.1016/j.apr.2020.09.019

  • Bi X, Zhang G, Li L, Wang X, Li M, Sheng G, Fu J, Zhou Z (2011) Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD. China. Atmos Environ 45:3447–3453

    CAS  Google Scholar 

  • Bikkina S, Andersson A, Kirillova E, Holmstrand H, Tiwari S, Srivastava AK, Bisht DS, Gustafsson Ö (2019) Nature sustainability. https://doi.org/10.1038/s41893-019-0219-0

  • Bisht DS, Dumka UC, Kaskaoutis DG, Pipal AS, Srivastava AK, Soni VK, Attri SD, Sateesh M, Tiwari S (2015) Carbonaceous aerosols and pollutants over Delhi urban environment: temporal evolution, source apportionment and radiative forcing. Sci Total Environ 521-522:431–445

    CAS  Google Scholar 

  • Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosp Sci Technol 40(1):27–67

    CAS  Google Scholar 

  • Bukowiecki N, Lienemann P, Hill M, Figi R, Richard A, Furger M, Rickers K, Falkenberg G, Zhao Y, Cliff SS, Prevot ASH, UrsBaltensperger, Buchmann B, Gehrig R (2009) Real-world emission factors for antimony and other brake wear related trace elements: size-segregated values for light and heavy-duty vehicles. Environ Sci Technol 43(21):8072–8078

    CAS  Google Scholar 

  • Caricchia AM, Chiavarini S, Pezza M (1999) Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos Environ 33:3731–3738

    CAS  Google Scholar 

  • Cauer H (1951) Some problems of atmospheric chemistry, in Compendium o Meteorology. American Meteorological Society, Boston

    Google Scholar 

  • Chan YC, Simpson RW, Mctainsh GH, Vowles PD (1997) Characterisation of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmos Environ 31(22):3773–3785

    CAS  Google Scholar 

  • Chattopadhyay S (2010) Spatial and temporal variation of urban air quality: a GIS approach. J Environ Prot 1(03):264–277

    CAS  Google Scholar 

  • Chen SC, Tsai CJ, Huang CY, Chen HD, Chen SJ, Lin CC, Tsai JH, Chou CCK, Lung SCC, Huang WR, Roam GD, Wu, WY, Smolik, J, Dzumbova L (2010) Chemical mass closure and chemical characteristics of ambient ultrafine particles and other PM fractions. Aerosol Sci Technol 44:713–723

  • Cheung KL, Polidori A, Ntziachristos L, Tzamkiozis T, Samaras Z, Cassee FR, Gerlofs M, Sioutas C (2009) Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, and biodiesel cars. Environ Sci Technol 43:6334–6340

    CAS  Google Scholar 

  • Chow JC, Watson JG, Edgerton SA, Vega E (2002a) Chemical composition of PM10 and PM2.5 in Mexico City during winter 1997. Sci Total Environ 287:177–201

    CAS  Google Scholar 

  • Chow JC, Watson JG, Edgerton SA, Vega E, Ortiz E (2002b) Spatial differences in outdoor PM10 mass and aerosol composition in Mexico City. J Air Waste Manage Assoc 52:423–434

    Google Scholar 

  • Chow JC, Watson JG, Antony Chen L-W, Patrick Arnott W, Moosmüller H, Fung K (2004) Environ Sci Technol 38(16):4414–4422. https://doi.org/10.1021/es034936u

  • Christensen WF (2004) Chemical mass balance analysis of air quality data when unknown pollution sources are present. Atmos Environ 38:4305–4317

    CAS  Google Scholar 

  • Christian TJ, Yokelson RJ, Cardenas B, Molina LT, Engling G, Hsu S-C (2009) Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico. Atmos Chem Phys 10:565–584

    Google Scholar 

  • Collett J, Daube B, Gunz D, Hoffmann M (1990) Intensive studies of Sierra Nevada cloud water chemistry and its relationship to precursor aerosol and gas concentrations. Atmos Environ 24:1741–1757

    Google Scholar 

  • Contini D, Cesari D, Genga A, Siciliano M, Ielpo P, Guascito MR, Conte M (2013) Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy). Sci Total Environ 472(15):248–261

    Google Scholar 

  • Cooper JA (1980) Environmental impact of residential wood combustion emissions and its implications. J Air Pollut Control Assoc 8:855–861

    Google Scholar 

  • Cornell S, Mace K, Coeppicus S, Duce R, Huebert B, Jickells T, Zhuang L-Z (2001) Organic nitrogen in Hawaiian rain and aerosol. J Geophys Res 106:7973–7983

    CAS  Google Scholar 

  • CPCB (2009) National ambient air quality standards, central pollution control board notification New Delhi, the 18th November, 2009

  • David AE, Kesiye IA, Stephen UA, Nimibofa A, Etta BA (2017) Measurement of total suspended particulate matter (TSP) in an urban environment: Yenagoa and its environs. J Geogr Environ and Earth Sci Int 11(3):1–8 2454-7352

    Google Scholar 

  • Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FE (1993) An association between air pollution and mortality in six US cities. N Engl J Med 329(24):1753–1759

    CAS  Google Scholar 

  • Duan JC, Tan JH (2013) Atmospheric heavy metals and arsenic in China: situation, sources and control policies. Atmos Environ 74:93–101. https://doi.org/10.1016/j.atmosenv.2013.03.031

    Article  CAS  Google Scholar 

  • Duan FK, Liu XD, He KB, Dong SP (2009) Measurements and characteristics of nitrogen-containing compounds in atmospheric particulate matter in Beijing, China. Bull. Environ Contam Toxicol 82:332–337

    CAS  Google Scholar 

  • Dumka U, Tiwari S, Kaskaoutis D, Hopke PK, Singh J, Srivastava AK, Bisht DS, Atri SD, Tyagi S, Misra A, Pasha GSM (2017) Assessment of PM2.5 chemical compositions in Delhi: primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation. J Atmos Chem 74:423–450

    CAS  Google Scholar 

  • Font A, Hoogh K, Leal-Sanchez M, Ashworth DC, Brown RJ, Hansell AL, Fuller GW (2015) Using metal ratios to detect emissions from municipal waste incinerators in ambient air pollution data. Atmos Environ 113:177–186

    CAS  Google Scholar 

  • Gadi R, Singh N, Sarkar AK, Parashar DC (2000) Mass size distribution and chemical composition of aerosols at New Delhi. In: Siddappa K, Sadasivan S, Sastri VN, Eappen KP, Somashekar RK, Manamohan Rao N (eds) Pollution in Urban Environment. Bangalore University, Bangalore, pp 30–32

    Google Scholar 

  • Gadi R, Shivani SSK, Mandal TK (2019) Source apportionment and health risk assessment of organic constituents in fine ambient aerosols (PM2.5): a complete year study over National Capital Region of India. Chemosphere 221:583–596

    CAS  Google Scholar 

  • Gerasopoulos E, Koulouri E, Kalivitis N, Kouvarakis G, Saarikoski S, Mäkelä T, Hillamo R, Mihalopoulos N (2007) Size-segregated mass distributions of aerosols over Eastern Mediterranean: seasonal variability and comparison with AERONET columnar size-distributions. Atmos Chem Phys 7:2551–2561

  • Goel V, Mishra SK, Ahlawat A, Kumar P, Senguttuvan TD, Sharma C, Reid JS (2020) Insights into coarse particle optics based on field evidence of particle morphology, chemical composition and internal structure. Atmos Environ 232:117338

    CAS  Google Scholar 

  • Goswami P, Baruah J (2008) Simulation of daily variation of suspended particulate matter over Delhi: relative roles of vehicular emission, dust, and domestic appliances, monthly weather review, pp- 3597–3607. https://doi.org/10.1175/2008MWR2386.1

  • Goyal P, Sidharth (2003) Present scenario of air quality in Delhi: a case study of CNG implementation. Atmos Environ 37:5423–5431

    Google Scholar 

  • Gunthe SS, Liu P, Panda U, Raj SS, Sharma A, Darbyshire E, Reyes-Villegas E, Allan J, Chen Y, Wang X, Song S, Pöhlker ML, Shi L, Wang Y, Kommula SM, Liu T, Ravikrishna R, McFiggans G, Mickley LJ, Martin ST, Pöschl U, Andreae MO, Coe H (2021) Enhanced aerosol particle growth sustained by high continental chlorine emission in India. Nat Geosci 14:77–84. https://doi.org/10.1038/s41561-020-00677-x

    Article  CAS  Google Scholar 

  • Guo H, Lee SC, Ho KF, Wang XM, Zou SC (2003) Particle associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos Environ 37:5307–5317

    CAS  Google Scholar 

  • Gupta S, Kumar K, Srivastava A, Jain VK (2011) Size distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in aerosol particle samples from the atmospheric environment of Delhi, India. Sci Total Environ 409:4674–4680

    CAS  Google Scholar 

  • Gupta S, Gadi R, Sharma SK, Mandal TK (2018) Characterization and source apportionment of organic compounds in PM10 using PCA and PMF at a traffic hotspot of Delhi. Sustain Cities Soc 39:52–67

    Google Scholar 

  • Gurjar BR, Aardenne JA, Lelieveld J, Mohan M (2004) Emission estimates and trends (1990–2000) for megacity Delhi and implications. Atmos Environ 38:5663–5681

    CAS  Google Scholar 

  • Guttikunda SK, Gurjar BR (2012) Role of meteorology in seasonality of air pollution in megacity Delhi, India. Environ Monit Assess 184:3199–3211

    CAS  Google Scholar 

  • Halsall CJ, Coleman PJ, Davis BJ, Burnett V, Waterhouse KS, Harding-Jones P, Jones KD (1994) Polycyclic aromatic hydrocarbons in UK urban air. Environ Sci Technol 28:2380–2386

    CAS  Google Scholar 

  • Harrison RM, Smith DJT, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ Sci Technol 30:825–832

    CAS  Google Scholar 

  • Hazarika N, Srivastava A (2016) Estimation of risk factor of elements and PAHs in size-differentiated particles in the National Capital Region of India. Air Qual Atmos Health 1–14

  • Hazarika N, Jain VK, Srivastava A (2015) Source identification and metallic profiles of size-segregated particulate matters at various sites in Delhi. Environ Monit Assess 187:602. https://doi.org/10.1007/s10661-015-4809-7

    Article  CAS  Google Scholar 

  • Hegde P, Kawamura K (2017) Chemical constituents of carbonaceous and nitrogen aerosols over Thumba region, Trivandrum, India. Arch Environ Contam Toxicol 73:456–473. https://doi.org/10.1007/s00244-017-0426-5

    Article  CAS  Google Scholar 

  • Henry RC, Hidy GM (1979) Multivariate analysis of particulate sulfate and other air quality variables by principal components—I. Annual data from Los Angeles and New York. Atmos Environ 13:1581–1596

    CAS  Google Scholar 

  • Ho KF, Lee SC, Chow JC, Watson JG (2003) Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmos Environ 37(8):1023–1032

    CAS  Google Scholar 

  • Ho KF, Ho SSH, Huang RJ, Liu SX, Cao JJ, Zhang T, Chuang HC, Chan CS, Hu D, Tian L (2015) Characteristics of water-soluble organic nitrogen in fine particulate matter in the continental area of China. Atmos Environ 106:252–261

    CAS  Google Scholar 

  • Holzworth GC (1967) Mixing depths wind speed and air pollution potential for selected locations in the United States. J Appl Meteorol 6:1039–1044

    Google Scholar 

  • Hopke PK (1991) Chapter 1 an introduction to receptor modeling, (Ed.) Philip, K.H., Data Handling in Science and Technology 1–10

  • Hsu A, Zomer A (2014) An interactive air-pollution map. Available on http://www.epi.yale.edu/the-metric/interactive-air-pollution-map (accessed 02.03.2016)

  • Izhar S, Goel A, Chakraborty A, Gupta T (2016) Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere 146:582–590

    CAS  Google Scholar 

  • Jain S, Sharma SK, Choudhary N, Masiwal R, Saxena M, Sharma A, Mandal TK, Gupta A, Gupta NC, Sharma C (2017) Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX and PMF at an urban site of Delhi, India. Environ Sci Pollut Res 24(17):14637–14656

    CAS  Google Scholar 

  • Jain S, Sharma SK, Vijyan N, Mandal TK (2020) Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: a four year study over Delhi, India. Environ Pollut 262:114337

    CAS  Google Scholar 

  • Jaiprakash, Habib G (2018) A technology-based mass emission factors of gases and aerosol precursor and spatial distribution of emissions from on-road transport sector in India. Atmos Environ 180:192–205. https://doi.org/10.1016/j.atmosenv.2018.02.053

    Article  CAS  Google Scholar 

  • Jerrett M (2015) Atmospheric science: the death toll from air-pollution sources. Nature 525:330–331

    CAS  Google Scholar 

  • Jian ZY, Ho SSH, Xu J (2005) The chemical composition of inorganic and carbonaceous material in PM2.5 in Nanjing, China. Atmos Environ 39(20):3735–3749

    Google Scholar 

  • Karar K, Gupta AK, Kumar A, Biswas AK (2006) Seasonal variations of PM10 and TSP in residential and industrial sites in an urban area of Kolkata, India. Environ Monit Assess 118:369–381

    CAS  Google Scholar 

  • Kaskaoutis DG (2014) Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. J Geophys Res 119:5424–5444

    Google Scholar 

  • Kavouras IG, Lawrence J, Koutrakis P, Stephanou EP, Oyola P (1999) Measurement of particulate aliphatic and polynuclear aromatic hydrocarbons in Santiago de Chile: source are conciliation and evaluation of sampling artifacts. Atmos Environ 33:4977–4986

    CAS  Google Scholar 

  • Kawamura K, Kobayashi M, Tsubonuma N, Mochida M, Watanabe T, Lee M (2004) Organic and inorganic compositions of marine aerosols from East Asia: seasonal variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable C and 20 N isotopic composition, in: geochemical investigations in Earth and space science: a tribute to Isaac R. Kaplan, edited by: Hill RJ, Leventhal J, Aizenshtat Z, Baedecker MJ, Claypool G, Eganhouse R, Goldhaber M, and Peters K. The Geochemical Society Publication No. 9, 243–265

  • Khan MF, Hirano K, Masunaga S (2010) Quantifying the sources of hazardous elements of suspended particulate matter aerosol collected in Yokohama, Japan. Atmos Environ 44:2646–2657

    CAS  Google Scholar 

  • Khemani LT, Naik MS, Momin GA, Kumar R, Chatterjee RN, Singh G, Murty BVR (1985) Trace elements in the atmospheric aerosols at Delhi, North India. J Atmos Chem 2:273–285

    CAS  Google Scholar 

  • Khillare PS, Balachandran S, Meena BR (2004) Spatial and temporal variation of heavy metals in atmospheric aerosol of Delhi. Environ Monit Assess 90:1–21

    CAS  Google Scholar 

  • Kondo Y, Miyazaki Y, Takegawa N, Miyakawa T, Weber RJ, Jimenez JL, Zhang Q, Worsnop DR (2007) Oxygenated and water-soluble organic aerosols in Tokyo. J Geophys Res 112:D01203. https://doi.org/10.1029/2006JD007056

    Article  CAS  Google Scholar 

  • Kumar S, Aggarwal SG, Gupta PK, Kawamura K (2015) Investigation of the tracers for plastic-enriched waste burning aerosols. Atmos Environ 108:49–58

    CAS  Google Scholar 

  • Kumar S, Aggarwal SG, Malherbe J, Barre JPG, Berail S, Gupta PK, Donard OFX (2016) Tracing dust transport from Middle-East over Delhi in March 2012 using metal and lead isotope composition. Atmos Environ 132:179–187

    CAS  Google Scholar 

  • Kumar S, Aggarwal SG, Sarangi B, Malherbe J, Barre JPG, Berail S, Séby F, Donard OFX (2018) Understanding the influence of open-waste burning on urban aerosols using metal tracers and lead isotopic composition. Aerosol Air Qual Res 18:2433–2446

    CAS  Google Scholar 

  • Laskin A, Smith JS, Laskin J (2009) Molecular characterization of nitrogen containing organic compounds in biomass burning aerosols using high resolution mass spectrometry. Environ Sci Technol 43:3764–3771

    CAS  Google Scholar 

  • Li J, Fang YT, Yoh M, Wang XM, Wu ZY, Kuang YW, Wen DZ (2012) Organic nitrogen deposition in precipitation in metropolitan Guangzhou city of southern China. Atmos Res 113:57–67

    CAS  Google Scholar 

  • Li J, Wang G, Aggarwal SG, Huang Y, Ren Y, Zhou B (2014) Comparison of abundances, compositions and sources of elements, inorganic ions and organic compounds in atmospheric aerosols from Xi'an and New Delhi, two megacities in China and India. Sci Total Environ 476:485–495

    Google Scholar 

  • Li T-C, Yuan CS, Huang HC, Lee CL, Wu SP, Tong C (2016) Inter-comparison of seasonal variation, chemical characteristics, and source identification of atmospheric fine particles on both sides of the Taiwan Strait. Sci Rep 6:22956. https://doi.org/10.1038/srep22956

    Article  CAS  Google Scholar 

  • Mace KA, Kubilay N, Duce RA (2003) Organic nitrogen in rain and aerosol in the eastern Mediterranean atmosphere: an association with atmospheric dust. J Geophys Res 108:4320. https://doi.org/10.1029/2002JD002997

    Article  CAS  Google Scholar 

  • Mandal P, Sarkar R, Mandal A, Saud T (2014) Seasonal variation and sources of aerosol pollution in Delhi, India. Environ Chem Lett 12(4):529–534

    CAS  Google Scholar 

  • Masih J, Singhvi R, Taneja A, Kumar K, Masih H (2012) Gaseous/particulate bound polycyclic aromatic hydrocarbons (PAHs), seasonal variation in north central part of rural India. Sustain Cities Soc 3:30–36

    Google Scholar 

  • Mehra A, Farago ME, Banerjee DK (1998) Impact of fly ash from coal-fired power stations in Delhi, with particular reference to metal contamination. Environ Monit Assess 50:15–35

    CAS  Google Scholar 

  • Miyazaki Y, Kondo Y, Han S, Koike M, Kodama D, Komazaki Y, Tanimoto H, Matsueda H (2007) Chemical characteristics of water-soluble organic carbon in the Asian outflow. J Geophys Res 112:D22S30. https://doi.org/10.1029/2007JD009116

  • Miyazaki Y, Aggarwal SG, Singh K, Gupta PK, Kawamura K (2009) Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India in winter: characteristics and formation processes. J Geophys Res: Atmospheres 114:D19206

    Google Scholar 

  • Mohan M, Bhati S, Sreenivas A, Marrapu P (2011) Performance evaluation of AERMOD and ADMS-urban for total suspended particulate matter concentrations in megacity Delhi. Aerosol Air Qual Res 11:883–894

    Google Scholar 

  • Monkkonen P, Uma R, Srinivasan D, Koponen IK, Lehtinen KEJ, Hameri K, Suresh R, SharmaVP KM (2004) Relationship and variations of aerosol number and PM10 mass concentrations in a highly polluted urban environment, New Delhi, India. Atmos Environ 38:425–433

    CAS  Google Scholar 

  • Münevver N, Koçak M (2018) Atmospheric water-soluble organic nitrogen (WSON) in the eastern Mediterranean: origin and ramifications regarding marine productivity. Atmos Chem Phys 18:3603–3618

    Google Scholar 

  • Nagpure AS, Sharma K, Gurjar BR (2013) Traffic induced emission estimates and trends (2000–2005) in megacity Delhi. Urban Clim 4:61–73

    Google Scholar 

  • Nakamura T, Narita Y, Kanazawa K, Uematsu M (2020) Organic nitrogen of atmospheric aerosols in the coastal area of Seto Inland Sea. Aerosol Air Qual Res 20:1016–1025

    CAS  Google Scholar 

  • Ndiokwere CL (1984) A study of heavy–metal pollution from motor–vehicle emissions and its effect on roadside soil, vegetation and crops in Nigeria. Environ PollutSeries B–Chem Phys 7:35–42

    CAS  Google Scholar 

  • Pacyna EG, Pacyna JM, Fudala J, Strzelecka-Jastrzab E, Hlawiczka S, Panasiuk D, Nitter S, Pregger T, Pfeiffer H, Friedrich R (2007) Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmos Environ 41:8557–8566. https://doi.org/10.1016/j.atmosenv.2007.07.040

    Article  CAS  Google Scholar 

  • Pande JN, Bhatta N, Biswas D (2002) Outdoor air pollution and emergency room visits at a hospital in Delhi. Indian J Chest Dis Allied Sci 44(1):13–19

    CAS  Google Scholar 

  • Pandey PK, Patel KS, Lenicek J (1999) Polycyclic aromatic hydrocarbons: need for assessment of health risks in India. Study of an urban industrial location in India. Environ Monit Assess 59:287–319

    CAS  Google Scholar 

  • Pant P, Harrison RM (2012) Critical review of receptor modelling for particulate matter: a case study of India. Atmos Environ 49:1–12

    CAS  Google Scholar 

  • Pant P, Shi Z, Pope FD, Harrison RM (2017) Characterization of traffic-related particulate matter emissions in a road tunnel in Birmingham, UK: trace metals and organic molecular markers. Aerosol Air Qual Res 17:117–130

    CAS  Google Scholar 

  • Panther BC, Hooper MA, Tapper NJ (1999) A comparison of air particulate matter and associated polycyclic aromatic hydrocarbons in some tropical and temperature urban environments. Atmos Environ 33:4087–4099

    CAS  Google Scholar 

  • Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36:2917–2924

    CAS  Google Scholar 

  • Parrington JR (1983) The chemistry of background atmospheric particle collected at Mauna Loa Observatory. PhD Dissertation, Department of Chemistry, University of Maryland

  • Patel A, Rastogi N, Gandhi U, Khatri N (2020) Oxidative potential of atmospheric PM10 at five different sites of Ahmedabad, a big city in Western India. Environ Pollut 268:115909

    Google Scholar 

  • Pathak AK, Yadav S, Kumar P, Kumar R (2013) Source apportionment and spatial–temporal variations in the metal content of surface dust collected from an industrial area adjoining Delhi, India. Sci Total Environ 443:662–672

    CAS  Google Scholar 

  • Perrino C, Canepari S, Catrambone M, Torre SD, Rantica E, Sargolini T (2009) Influence of natural events on the concentration and composition of atmospheric particulate matter. Atmos Environ 43:4766–4779

    CAS  Google Scholar 

  • Perrino C, Tiwari S, Catrambone M, Torre SD, Rantica E, Canepari S (2011) Chemical characterization of atmospheric PM in Delhi, during different periods of the year including Diwali festival. Atmos Poll Res 2:418–427

    CAS  Google Scholar 

  • Pio CA, Legrand M, Oliveira T, Afonso J, Santos C, Caseiro A, Fialho P, Barata F, Puxbaum H, Sanchez-Ochoa A, Kasper-Giebl A, Gelencse’r A, Preunkert S, Schock M (2007) Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west-east transect across. Eur J Geophys Res 112:D23S02. https://doi.org/10.1029/2006JD008038

  • Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S, Pey J, de la Rosa J,  Sánchez de la Campa A, Artíñano B, Salvador P, García Dos Santos S, Fernández-Patier R, Moreno-Grau S, Negral L, Minguillón MC, Monfort E, Gil JI, Inza A, Ortega LA, Santamaría JM, Zabalza J (2007) Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41(34):7219–7231

  • Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over northern India. J Aerosol Sci 41(1):88–98

    CAS  Google Scholar 

  • Ram K, Sarin MM, Tripathi SN (2012) Temporal trends in atmospheric PM2.5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo Gangetic Plain. Environ Sci Technol 46:686–695

    CAS  Google Scholar 

  • Rastogi N, Zhang X, Edgerton ES, Ingall E, Weber RJ (2011) Filterable water soluble organic nitrogen in fine particles over the south-eastern USA during summer. Atmos Environ 45:6040–6047

    CAS  Google Scholar 

  • Rastogi N, Patel A, Singh A, Singh D (2015) Diurnal variability in secondary organic aerosol formation over the Indo-Gangetic Plain during winter using online measurement of water-soluble organic carbon. Aerosol Air Qual Res 15:2225–2231. https://doi.org/10.4209/aaqr.2015.02.0097

    Article  CAS  Google Scholar 

  • Chesselet R, Orelli J, Buat-Menard P (1972) Variations in ionic ratios between reference sea water and marine aerosols. J Geophysical Res 77(27):5116–5131

  • Saarikoski S, Timonen H, Saarnio K, Aurela M, Järvi L, Keronen P, Kerminen V-M, Hillamo R (2008) Sources of organic carbon in fine particulate matter in northern European urban air. Atmos Chem Phys 8:6281–6295

    CAS  Google Scholar 

  • Salma I, Ocskay R, Raes N, Maenhaut W (2005) Fine structure of mass size distributions in an urban environment. Atmos Environ 39:5363–5374

    CAS  Google Scholar 

  • Sandradewi J, Prevot ASH, Weingartner E, Schmidhauser R, Gysel M, Baltensperger U (2008) A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmos Environ 42:101–112

    CAS  Google Scholar 

  • Sarkar S, Khillare PS, Jyethi DS, Hasan A, Parween M (2010) Chemical speciation of respirable suspended particulate matter during a major firework festival in India. J Hazard Mater 184:321–330

    CAS  Google Scholar 

  • Saud T, Gautam R, Mandal TK, Gadi R, Singh DP, Sharma SK, Dahiya M, Saxena M (2012) Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP), India. Atmos Environ 61:212–220

    CAS  Google Scholar 

  • Saud T, Saxena M, Singh DP, Saraswati, Manisha Dahiya, Sharma SK, Datta A, Ranu Gadi, Mandal TK  (2013) Spatial variation of chemical constituents from the burning of commonly used biomass fuels in rural areas of the Indo-Gangetic Plain (IGP), India. Atmos Environ 71:158–169

  • Saxena M, Sharma A, Sena A, Saxena P, Saraswati, Mandal TK, Sharma SK, Sharma C (2017) Water soluble inorganic species of PM10 and PM2.5 at an urban site of Delhi, India: seasonal variability and sources. Atmos Res 184:112–125

  • Schauer JJ, Fraser MP, Cass GR, Simoneit BRT (2002) Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode. Environ Sc Technol 36:3806–3814. https://doi.org/10.1021/es011458j

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics from air pollution to climate change. John Wiley and Sons, New York

    Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  • Shandilya KK, Khare M, Gupta AB (2007) Suspended particulate matter distribution in rural-industrial satna and in urban-industrial South Delhi. Environ Monit Assess 128:431–445. https://doi.org/10.1007/s10661-006-9337-z

    Article  CAS  Google Scholar 

  • Sharma SK, Mandal TK, Saxena M, Sharma A, Gautam R (2014) Source apportionment of PM10 by using positive matrix factorization at an urban site of Delhi, India. Urban Clim 10:656–670

    Google Scholar 

  • Sharma SK, Mandal TK, Jain S, Saraswati Sharma A, Saxena M (2016a) Source apportionment of PM2.5 in Delhi, India using PMF model. Bull Environ Contam Toxicol 97(2):286–293

    CAS  Google Scholar 

  • Sharma SK, Sharma A, Saxena M, Choudhary N, Masiwal R, Mandal TK, Sharma C (2016b) Chemical characterization and source apportionment of aerosol at an urban area of Central Delhi. Atmos Pollu Res 7(1):110–121

    Google Scholar 

  • Sharma SK, Agarwal P, Mandal TK, Karapurkar SG, Shenoy DM, Peshin SK, Gupta A, Saxena M, Jain S, Sharma A, Saraswati (2017) Study on ambient air quality of megacity Delhi, India during odd-even strategy. MAPAN 32(2):155–165

    Google Scholar 

  • Sharma SK, Mandal TK, Sharma A, Jain S (2018a) Carbonaceous species of PM2.5 in megacity Delhi, India during 2012–2016. Bull Environ Contam Toxicol 100(5):695–701

    CAS  Google Scholar 

  • Sharma SK, Mandal TK, Sharma A, Jain S (2018b) Seasonal and annual trends of carbonaceous species of PM10 over megacity Delhi, India during 2010–2017. J Atmos Chem 75(3):305–318

    CAS  Google Scholar 

  • Sharma SK, Choudhary N, Srivastava P, Naja M, Vijayan N, Kotnala G, Mandal TK (2020) Variation of carbonaceous species and trace elements in PM10 at a mountain site in the central Himalayan region of India. J Atmos Chem 77(3):49–62

    CAS  Google Scholar 

  • Shen Z, Cao J, Arimoto R, Han Z, Zhang R, Han Y, Liu S, Okuda T, Nakao S, Tanaka S (2009) Ionic composition of tsp and PM2.5 during dust storms and air pollution episodes at Xi’an, China. Atmos Environ 43:2911–2918

    CAS  Google Scholar 

  • Shepherd P (1993) Polyvinyl chi municipal solid plastics in combustion impact upon Di emissions – a synthesis of views, Solid Waste Association of North America Silver Spring, Maryland, NREL/TP-430-5518 • UC Category: 249 • DE93010013, Prepared under Subcontract No. AS-2-12098-1, April 1993

  • Shivani, Gadi R, Sharma SK, Mandal TK, Kumar R, Sharma M, Kumar S, Kumar S (2018) Levels and sources of organic compounds in fine ambient aerosols over National Capital Region of India. Environ Sci Pollut Res 25:31071–31090

    CAS  Google Scholar 

  • Shivani, Gadi R, Sharma SK, Mandal TK (2019) Seasonal variation, source apportionment and source attributed health risk of fine carbonaceous aerosol over National Capital Region, India. Chemosphere 237:124500

    CAS  Google Scholar 

  • Shridhar V, Khillare PS, Agarwal T, Ray S (2010) Metallic species in ambient particulate matter at rural and urban location of Delhi. J. Hazard Mater 175:600–607

    CAS  Google Scholar 

  • Simoneit BR, Medeiros PM, Didyk BM (2005) Combustion products of plastics as indicators for refuse burning in the atmosphere. Environ Sci Technol 39(18):6961–6970

    CAS  Google Scholar 

  • Singh D, Ranu Gadi P, Mandal TK, Saud T, Saxena M, Sharma SK (2013) Emissions estimates of PAH from biomass fuels used in rural sector of Indo-Gangetic Plains of India. Atmos Environ 68:120–126

  • Song Y, Xie S, Zhang Y, Zeng L, Salmon LG, Zheng M (2006) Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Sci. Total Environ 372(1):278–286

    CAS  Google Scholar 

  • Spokes LJ, Yeatman SG, Cornell SE, Jickells TD (2000) Nitrogen deposition to the eastern Atlantic Ocean: the importance of south-easterly flow. Tellus 52B:37–49

    CAS  Google Scholar 

  • Srivastava A, Jain VK (2005) A study to characterize the influence of outdoor TSP and associated metals on the indoor environments in Delhi. J Environ Sci Eng 47:222–231

    CAS  Google Scholar 

  • Srivastava A, Jain VK (2007a) A study to characterize the suspended particulate matters in an indoor environment in Delhi, India. Build Environ 42:2046–2052

    Google Scholar 

  • Srivastava A, Jain VK (2007b) Size distribution and source identification of total suspended particulate matter and associated heavy metals in the urban atmosphere of Delhi. Chemosphere 68(3):579–589

    CAS  Google Scholar 

  • Srivastava A, Jain VK (2007c) Seasonal trends in coarse and fine particle sources in Delhi by the chemical mass balance receptor model. J Hazard Mater 144(1):283–291

    CAS  Google Scholar 

  • Srivastava A, Jain VK (2008) Source apportionment of suspended particulate matters in a clean area of Delhi: a note. Transp Res Part D: Transp Environ 13(1):59–63

    Google Scholar 

  • Srivastava A, Gupta S, Jain VK (2009) Winter-time size distribution and source apportionment of total suspended particulate matter and associated metals in Delhi. Atmos Res 92(1):88–99

    CAS  Google Scholar 

  • Stewart GJ, Nelson BS, Acton WJF, Vaughan AR, Farren NJ, Hopkins JR et al (2020) Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India. Atmos Chemis Phys Discussions 1–45

  • Sun Y, Qi-xing Z, Jing A, Wei-tao L, Rui L (2009) Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma 150(1-2):106–112

    CAS  Google Scholar 

  • Suneja J, Kotnala G, Kaur A, Mandal TK, Sharma SK (2020) Long-term measurements of SO2 over Delhi, India. MAPAN-J Metrol Soc India 35(1):125–133

    Google Scholar 

  • Tandon A, Yadav S, Attri AK (2008) City-wide sweeping a source for respirable particulate matter in the atmosphere. Atmos Environ 42:1064–1069

    CAS  Google Scholar 

  • Thurston GD, Spengler JD (1985) A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos Environ:1919–1925

  • Tian HZ, Wang Y, Xue ZG, Cheng K, Qu YP, Chai FH, Hao JM (2010) Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980– 2007. Atmos Chem Phys 10:11905–11919. https://doi.org/10.5194/acp10-11905-2010

    Article  CAS  Google Scholar 

  • Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    CAS  Google Scholar 

  • Turpin BJ, Huntzicker JJ (1991) Secondary formation of organic aerosol in the Los Angeles basin: a descriptive analysis of organic and elemental carbon concentrations. Atmos Environ 25(2):207–215

    Google Scholar 

  • Unceta N, Séby F, Malherbe J, Donard OFX (2010) Chromium speciation in solid matrices and regulation: a review. Anal Bioanal Chem 397:1097–1111

    CAS  Google Scholar 

  • Venkataraman C, Lyons JM, Friedlander SK (1994) Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 1. Sampling, measurement methods, and source characterization. Environ Sci Technol 28:555–562

    CAS  Google Scholar 

  • Venkataraman C, Habib G, Eiguren-Fernandez A, Miguel AH, Friedlander SK (2005) Residential biofuels in South Asia: carbonaceous aerosol emissions and climate impacts. Science 307:1454–1456. https://doi.org/10.1126/science.1104359

    Article  CAS  Google Scholar 

  • Wang Z, Chen J, Yang P, Qiao X, Tian F (2007) Polycyclic aromatic hydrocarbons in Dalian soils: distribution and toxicity assessment. J Environ Monit 9(2):199–204

    CAS  Google Scholar 

  • Weber RJ, Sullivan AP, Peltier RE, Russell A, Yan B, Zheng M, Gouw JD, Warneke C, Brock C, Holloway JS, Atlas EL, Edgerton E (2007) A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. J Geophys Res 112:D13302. https://doi.org/10.1029/2007JD008408

    Article  CAS  Google Scholar 

  • World Health Organization (2000) WHO Regional Office for Europe, Copenhagen, Denmark, 2000. Chapter 5.9. Air Quality Guidelines, 2nd Edition

  • Wu G, Ram K, Fu P, Wang W, Zhang Y, Liu X, Shatone EA, Pradhan BB, Man P, Arnico D, Panday K, Wan X, Bai Z, Kang S, Zhang Q, Cong Z (2019) Water-soluble brown carbon in atmospheric aerosols from Godavari (Nepal), a Regional Representative of South Asia. Environ Sci Technol 53:3471–3479

    CAS  Google Scholar 

  • Xia L, Gao Y (2011) Characterization of trace elements in PM2.5 aerosols in the vicinity of highways in northeast New Jersey in the U.S. east coast. Atmos Poll Res 2(1):34–44

    CAS  Google Scholar 

  • Yadav S, Rajamani V (2006) Air quality and trace metal chemistry of different size fractions of aerosols in N–NW India—implications for source diversity. Atmos Environ 40:698–712

    CAS  Google Scholar 

  • Yang RT, Hernandez-Maldonado AJ, Yang FH (2003) Desulfurization of transportation fuels with zeolites under ambient conditions. Science 301:79–80

    CAS  Google Scholar 

  • Yin J, Harrison RM, Chen Q, Rutter A, Schauer JJ (2010) Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmos Environ 44(6):841–851

    CAS  Google Scholar 

  • Yu X, Yu Q, Zhu M, Tang M, Li S, Yang W, Wang X (2017) Water soluble organic nitrogen (WSON) in ambient fine particles over a megacity in South China: spatiotemporal variations and source apportionment. J Geophys Res-Atmos 12213:045–13,060. https://doi.org/10.1002/2017JD027327

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin. A critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33(4):489–515

    CAS  Google Scholar 

  • Zhang T, Zhou H (2013) A reversible long-life lithium–air battery in ambient air. Nat Commun 4:1817. https://doi.org/10.1038/ncomms2855

    Article  CAS  Google Scholar 

  • Zhang Q, Anastasio C, Jimenez-Cruz M (2002) Water-soluble organic nitrogen in atmospheric fine particles (PM2.5) from northern California. J Geophys Res 107:D11. https://doi.org/10.1029/2001jd000870

    Article  Google Scholar 

  • Zhang Y, Cai J, Wang S, He K, Zheng M (2017) Review of receptor-based source apportionment research of fine particulate matter and its challenges in China. Sci Total Environ 586:917–929

    CAS  Google Scholar 

  • Zhu Chong-Shu, Cheng-Chieh Chen, Jun-Ji Cao, Chuen-Jinn Tsai, Charles C-K Chou, Shaw-Chen Liu, Gwo-Dong Roam (2010) Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmos Environ 44: 2668–2673

  • Zhu CS, Tsai CJ, Chen SC, Cao JJ, Roam GD (2012) Positive sampling artifacts of organic carbon fractions for fine particles and nanoparticles in a tunnel environment. Atmos Environ 54:225–230

Download references

Acknowledgements

The authors are thankful to the Director, CSIR-NPL, New Delhi, and Head, Environmental Sciences and Biomedical Metrology Division, CSIR-NPL, New Delhi, India, for their constant encouragement and support. The authors are also thankful to the Ministry of Earth Sciences for the financial support (MoES/16/19/2017-APHH) (DelhiFlux).

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files

Author information

Authors and Affiliations

Authors

Contributions

RJ has collected samples, done chemical analysis of organics, WSOC, metal using ED-XRF, and lead in the manuscript preparation. SA has collected samples and done chemical analysis of organics, WSOC, and nitrogen component and prepared extraction for ions. GK, RA, AM, LY, PY, NC, MR, RB, AR, and USS have collected samples over Delhi and contributed to the manuscript. NR and AP have assisted in WSOC and TN and contributed to the manuscript. Shivani and RG have assisted in the analysis of PAH and contributed to the manuscript. PS has analyzed metal using ICP-OEC and contributed to the manuscript. NV has assisted in metal analysis using ED-XRF and contributed to the manuscript. CS has contributed to the manuscript. SKS has analyzed OC, EC data and performed PCA and contributed to the draft of the manuscript. TKM has given conception and design of the study, guidance, analyzed the WSIS data, and contributed to the draft of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Tuhin Kumar Mandal.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests

Additional information

Responsible Editor: Constantini Samara

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3733 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangirh, R., Ahlawat, S., Arya, R. et al. Gridded distribution of total suspended particulate matter (TSP) and their chemical characterization over Delhi during winter. Environ Sci Pollut Res 29, 17892–17918 (2022). https://doi.org/10.1007/s11356-021-16572-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16572-w

Keywords

Navigation