Skip to main content

Advertisement

Log in

Chemical Constituents of Carbonaceous and Nitrogen Aerosols over Thumba Region, Trivandrum, India

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Aerosol filter samples collected at a tropical coastal site Thumba over Indian region were analysed for water-soluble ions, total carbon and nitrogen, organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon/nitrogen and their sources for different seasons of the year. For the entire study period, the order of abundance of ions showed the dominance of secondary ions, such as SO4 2−, NO3 , and NH4 +. On average, Mg2+ (56%), K+ (11%), SO4 2− (8.8%), and Ca2+ (8.1%) contributions were from maritime influence. There was significant chloride depletion due to enhanced levels of inorganic acids, such as SO4 2− and NO3 . Total carbon contributed 21% of the aerosol total suspended particulate matter in which 85% is organic carbon. Primary combustion-generated carbonaceous aerosols contributed 41% of aerosol mass for the entire study period. High average ratios of OC/EC (5.5 ± 1.8) and WSOC/OC (0.38 ± 0.11) suggest that organic aerosols are predominantly comprised of secondary species. In our samples, major fraction (89 ± 9%) was found to be inorganic nitrate in total nitrogen (TN). Good correlations (R 2 ≥ 0.82) were observed between TN with NO3 plus NH4 +, indicating that nitrate and ammonium ions account for a significant portion of TN. The temporal variations in the specific carbonaceous aerosols and air mass trajectories demonstrated that several pollutants and/or their precursor compounds are likely transported from north western India and the oceanic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aggarwal SG, Kawamura K (2008) Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport. J Geophys Res 113(D14):301. doi:10.1029/2007JD009365

    Article  CAS  Google Scholar 

  • Agnihotri R et al (2011) Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean. Atmos Environ 45:2828–2835

    Article  CAS  Google Scholar 

  • Anderson TL, Charlson RJ, Schwartz SE, Knutti R, Boucher O, Rodhe H, Heintzenberg J (2003) Climate forcing by aerosols. A hazy picture. Science 300:1103–1104

    Article  CAS  Google Scholar 

  • Andreae MO, Atlas E, Cachier H, Cofer WR III, Harris GW, Helas G, Koppmann R, Lacaux JP, Ward DE (1996) Trace gas and aerosol emissions from Savanna fires. In: Levine JS (ed) Biomass burning and global change. MIT Press, Cambridge, pp 278–295

    Google Scholar 

  • Ball WP et al (2003) Bulk and size-segregated aerosol composition observed during INDOEX (1999) overview of meteorology and continental impacts. J Geophys Res 108(D10):8001. doi:10.1029/2002JD002467

    Article  CAS  Google Scholar 

  • Begam GR, Viswanatha Vachaspati C, Nazeer Ahammed Y, Raghavendra Kumar K, Reddy RR, Sharma SK, Saxena Mohit, Mandal TK (2016) Seasonal characteristics of water-soluble inorganic ions and carbonaceous aerosols in total suspended particulate matter at a rural semi-arid site, Kadapa (India). Environ Sci Pollut Res. doi:10.1007/s11356-016-7917-1

    Google Scholar 

  • Bin Abas MR, Rahman NA, Omar N, Maah MJ, Abu Samah A, Oros DR, Otto A, Simoneit BRT (2004) Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia. Atmos Environ 38:4223–4241

    Article  CAS  Google Scholar 

  • Blando JD, Turpin BJ (2000) Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmos Environ 34:1623–1632

    Article  CAS  Google Scholar 

  • Bond TC, Streets DG, Yarber KF, Nelson SM, Woo JH, Klimont Z (2004) A technology based global inventory of black and organic carbon emissions from combustion. J Geophys Res 109(D14):203. doi:10.1029/2003JD00369

    Article  CAS  Google Scholar 

  • Brasseur GP, Orlando JJ, Tyndall GS (1999) Atmospheric chemistry and global change. Oxford University Press, New York, p 654

    Google Scholar 

  • Cao JJ, Lee SC, Ho KF (2004) Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta region. China Atmos Environ 38(27):4447–4456

    Article  CAS  Google Scholar 

  • Cao JJ, Wu F, Chow JC, Lee SC, Li Y, Chen SW, An ZS, Fung KK, Watson JG, Zhu CS, Liu SX (2005) Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmos Chem Phys 5:3127–3137

    Article  CAS  Google Scholar 

  • Cao JJ, Lee SC, Chow JC, Watson JG, Ho KF, Zhang RJ, Jin ZD, Shen ZX, Chen GC, Kang YM, Zou SC, Zhang LZ, Qi SH, Dai MH, Cheng Y, Hu K (2007) Spatial and seasonal distributions of carbonaceous aerosols over China. J Geophys Res 112:D22S11. doi:10.1029/2006JD008205

    Article  Google Scholar 

  • Ceburnis D et al (2011) Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis. Atmos Chem Phys 11:8593–8606. doi:10.5194/acp-11-8593-2011

    Article  CAS  Google Scholar 

  • Chi JW, Li WJ, Zhang DZ, Zhang JC, Lin YT, Shen XJ, Sun JY, Chen JM, Zhang XY, Zhang YM, Wang WX (2015) Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere. Atmos Chem Phys 15:11341–11353. doi:10.5194/acp-15-11341-2015

    Article  CAS  Google Scholar 

  • Chow JC, Lowenthal DH, Chen LW, Wang X, Watson JG (2015) Mass reconstruction methods for PM2.5: a review. Air Qual Atmos Health 8:243–263

    Article  CAS  Google Scholar 

  • Chowdhury Z, Zheng M, Schauer JJ, Sheesley RJ, Salmon LG, Cass GR, Russell AG (2007) Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities. J Geophys Res 112(D15):303. doi:10.1029/2007JD008386

    Article  Google Scholar 

  • Claeys M, Wang W, Vermeylen R, Kourtchev I, Chi XG, Farhat Y, Surratt JD, González YG, Sciare J, Maenhaut W (2010) Chemical characterisation of marine aerosol at Amsterdam Island during the austral summer of 2006–2007. J Aerosol Sci 1:13–22

    Article  CAS  Google Scholar 

  • Cooke WF, Wilson JJN (1996) A global black carbon aerosol model. J Geophys Res 101(19):3951–9409

    Google Scholar 

  • Cooke WF, Liousse C, Cachier H, Feichter J (1999) Construction of a 1 × 1 fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J Geophys Res 104:22137–22162

    Article  CAS  Google Scholar 

  • Das PK (1986) Monsoons, fifth IMO lecture, WMO, No-613. World Meteorological Organisation, Geneva

    Google Scholar 

  • Dick WD, Saxena P, McMurry PH (2000) Estimation of water uptake by organic compounds in submicron aerosols measured during Southeastern Aerosol and Visibility Study. J Geophys Res 105:1471–1479

    Article  CAS  Google Scholar 

  • Draxler RR, Rolph GD (2010) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php), NOAA Air Resour Lab, Silver Spring, MD

  • Dunlea EJ, DeCarlo PF, Aiken AC, Kimmel JR, Peltier RE, Weber RJ, Tomlinson J, Collins DR, Shinozuka Y, McNaughton CS, Howell SG, Clarke AD, Emmons LK, Apel EC, Pfister GG, van Donkelaar A, Martin RV, Millet DB, Heald CL, Jimenez JL (2009) Evolution of Asian aerosols during transpacific transport in INTEX-B. Atmos Chem Phys 9:7257–7287. doi:10.5194/acp-9-7257-2009

    Article  CAS  Google Scholar 

  • Engling G, Zhang YN, Chan CY, Sang XF, Lin M, Ho KF, Li YS, Lin CY, Lee JJ (2011) Characterization and sources of aerosol particles over the southeastern Tibetan Plateau during the Southeast Asia biomass-burning season. Tellus B 63:117–128. doi:10.1111/j1600-0889.2010.00512.x

    Article  CAS  Google Scholar 

  • Falkovich AH, Grabber ER, Schokolnik G, Rudich Y, Maenhaut W, Artaxo P (2005) Low molecular weight organic acids in aerosol particles from Rondonia, Brazil during the biomass-burning, transition and wet periods. Atmos Chem Phys 5:781–797

    Article  CAS  Google Scholar 

  • Favez O, Cachier H, Sciare J, Alfaro SC, El-Araby TM, Harhash MA, Abdelwahab MM (2008) Seasonality of major aerosol species and their transformations in Cairo megacity. Atmos Environ 42:1503–1516

    Article  CAS  Google Scholar 

  • Finkelstein DB, Pratt LM, Brassell SC (2006) Can biomass burning produce a globally significant carbon-isotope excursion in the sedimentary record? Earth and Planetary. Sci Lett 250:501–510

    CAS  Google Scholar 

  • Fisseha R et al (2009) Determination of primary and secondary sources of organic acids and carbonaceous aerosols using stable carbon isotopes. Atmos Environ 43:431–437

    Article  CAS  Google Scholar 

  • Galloway JN (2000) Nitrogen mobilization in Asia. Nutr Cycl Agroecosystem 57:1–12

    Article  Google Scholar 

  • George SK, Nair PR, Parameswaran K, Jacob S, Abraham A (2008) Seasonal trends in chemical composition of aerosols at a tropical coastal site of India. J Geophys Res 113(D16):209. doi:10.1029/2007JD009507

    Article  CAS  Google Scholar 

  • George SK, Nair PR, Parameswaran K, Jacob S (2011) Wintertime chemical composition of aerosols at a rural location in the Indo-Gangetic Plains. J Atmos Solar Terres Phys 73(2011):1798–1809. doi:10.1016/j.jastp.2011.04.005

    Article  CAS  Google Scholar 

  • Guazzotti SA et al (2003) Characterization of carbonaceous aerosols outflow from India and Arabia: biomass/biofuel burning and fossil fuel combustion. J Geophys Res 108(D15):4485. doi:10.1029/2002JD003277

    Article  CAS  Google Scholar 

  • Gustafsson O, Krusa M, Zencak Z, Sheesley RJ, Granat L, Engstrom E, Praveen PS, Rao PSP, Leck C, Rodhe H (2009) Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323:495–498. doi:10.1126/science.1164857

    Article  CAS  Google Scholar 

  • Habib G et al (2004) New methodology for estimating biofuel consumption for cooking: atmospheric emissions of black carbon and sulfur dioxide from India. Global Biogeochem Cycles 18(GB):3007. doi:10.1029/2003GB002157

    Google Scholar 

  • Hara K, Osada K, Matsunaga K, Iwasaka Y, Shibata T, Furuya K (2002) Atmospheric inorganic chlorine and bromine species in Arctic boundary layer of the winter/spring. J Geophys Res 107(D18):4361. doi:10.1029/2001JD001008

    Article  CAS  Google Scholar 

  • Hegde P, Kawamura K (2012) Seasonal variations of water-soluble organic carbon, dicarboxylicacids, ketoacids, and α-dicarbonyls in the central Himalayan aerosols. Atmos Chem Phys 12:6645–6665. doi:10.5194/acp-12-6645-2012

    Article  CAS  Google Scholar 

  • Hegde P, Sudheer AK, Sarin MM, Manjunatha BR (2007) Chemical characteristics of atmospheric aerosols over southwest coast of India. Atmos Environ 41:7751–7766

    Article  CAS  Google Scholar 

  • Heidam NZ (1982) Atmospheric aerosol factor models, mass and missing data. Atmos Environ 16:1923–1931

    Article  CAS  Google Scholar 

  • Hopkins RJ, Lewis K, Desyaterik Y, Wang Z, Tivanski AV, Arnott WP, Laskin A, Gilles MK (2007) Correlations between optical, chemical, and physical properties of biomass burn aerosols. Geophys Res Lett 34(L1):8806. doi:10.1029/2007GL030502

    Google Scholar 

  • Jacobson MZ (2001) Strong radiative heating due to the mising state of black carbon in atmospheric aerosols. Nature 409:695–697

    Article  CAS  Google Scholar 

  • Johansen AM, Siefert RL, Hoffmann MR (1999) Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the Arabian Sea: anions and cations. J Geophys Res 104:26325–26347

    Article  CAS  Google Scholar 

  • Jung J, Tsatsral B, Kim YJ, Kawamura K (2010) Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia during the cold winter of 2007 to 2008: dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls. J Geophys Res 115:D22203. doi:10.1029/2010JD014339

    Article  CAS  Google Scholar 

  • Kawamura K et al (2004) Organic and inorganic compositions of marine aerosols from East Asia: seasonal variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable C and N isotopic composition. Geochem Investig Earth Space Sci 9:243–265 A Tribute to Issac R Kaplan edited by RJ Hill Special Publication Geochemical Society

    CAS  Google Scholar 

  • Keene WC, Pszenny AAP, Galloway JN, Hawley ME (1986) Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J Geophys Res 91:6647–6658

    Article  CAS  Google Scholar 

  • Kim HS, Huha JB, Hopke PH, Holsenc TM, Yia SM (2007) Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmos Environ 41:6762–6770

    Article  CAS  Google Scholar 

  • Knaapen AM, Borm PJA, Albrecht C, Schins RPF (2004) Inhaled particles and lung cancer, part A: mechanisms. Int J Cancer 109:799–809

    Article  CAS  Google Scholar 

  • Kumar R et al (2011) Influences of the springtime northern Indian biomass burning over the central Himalayas. J Geophys Res 116(D19):302. doi:10.1029/2010JD015509

    Google Scholar 

  • Kumar A, Ram K, Ojha N (2016) Variations in carbonaceous species at a high-altitude site in western India: role of synoptic scale transport. Atmos Environ. doi:10.1016/j.atmosenv.2015.07.039

    Google Scholar 

  • Laskin A, Smith JS, Laskin J (2009) Molecular characterization of nitrogen-containing organic compounds in biomass burning aerosols using high-resolution mass spectrometry. Environ Sci Technol 43:3764–3771

    Article  CAS  Google Scholar 

  • Lee YN et al (2003) Air borne measurement of inorganic ionic components of fine aerosol particles using the particle-into liquid sampler coupled to ion chromatography technique during ACE-Asia and TRACE-P. J Geophys Res 108(D23):8646. doi:10.1029/2002JD003265

    Article  CAS  Google Scholar 

  • Lelieveld J et al (2001) The Indian Ocean Experiment: widespread air pollution from South and Southeast. Asia Sci 291:1031–1036

    CAS  Google Scholar 

  • Lim HJ, Turpin BJ (2002) Origins of primary and secondary organic aerosol in Atlanta: results of time-resolved measurements during the Atlanta supersite experiment. Environ Sci Technol 36:4489–4496. doi:10.1021/Es0206487

    Article  Google Scholar 

  • Liousse C, Penner JE, Chuang C, Walton JJ, Eddleman H, Cachier H (1996) A global three-dimensional study of carbonaceous aerosols. J Geophys Res 101(19):19411–19432

    Article  CAS  Google Scholar 

  • Mace KA, Artaxo P, Duce RA (2003) Water-soluble organic nitrogen in Amazon Basin aerosols during the dry (biomass burning) and wet seasons. J Geophys Res D108:4512. doi:10.1029/2003JD003557

    Article  CAS  Google Scholar 

  • Malm WC, Day DE, Carrico C, Kreidenweis SM, Collett JL Jr, McMeeking G, Lee T, Carrillo J, Schichtel B (2005) Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite aerosol characterization study. J Geophys Res 110(D14):302. doi:10.1029/2004JD005494

    Article  CAS  Google Scholar 

  • Martens CS, Wesolowsky JJ, Harris RC, Keifer R (1973) Chlorine loss from Puerto Rican and San Francisco Bay area marine aerosols. J Geophys Res 78(36):8778–8791

    Article  CAS  Google Scholar 

  • Mayol-Bracero OL, Guyon P, Graham B, Roberts G, Andreae MO, Decesari S, Facchini MC, Fuzzi S, Artaxo P (2002) Water-soluble organic compounds in biomass burning aerosols over amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. J Geophys Res 107(D20):8091. doi:10.1029/2001JD000522

    Article  CAS  Google Scholar 

  • Meinert DL, Winchester JW (1977) Chemical relationships in the north Atlantic marine aerosol. J Geophys Res 82(12):1778–1782

    Article  CAS  Google Scholar 

  • Miyazaki Y, Kondo Y, Takegawa N, Komazaki Y, Fukuda M, Kawamura K, Mochida M, Okuzawa K, Weber RJ (2006) Time-resolved measurements of water-soluble organic carbon in Tokyo. J Geophys Res 111(D23):206. doi:10.1029/2006JD007125

    Article  CAS  Google Scholar 

  • Miyazaki Y, Fu PQ, Kawamura K, Mizoguchi Y, Yamanoi K (2012) Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest. Atmos Chem Phys 12:1367–1376

    Article  CAS  Google Scholar 

  • Nair PR, George SK, Sunilkumar SV, Parameswaran K, Jacob S, Abraham A (2006) Chemical composition of aerosols over peninsular India during winter. Atmos Environ 40:6477–6493

    Article  CAS  Google Scholar 

  • Narayanan V (1967) An observational study of the sea breeze at an equatorial coastal station. Indian J Meteorol Geophys 18:497–504

    Google Scholar 

  • Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle. Biogeochemistry 57(58):99–136

    Article  Google Scholar 

  • Neusub C, Gnauk T, Plewka A, Herrmann H, Quinn PK (2002) Carbonaceous aerosol over the Indian Ocean: OC/EC fractions and selected specifications from size-segregated onboard samples. J Geophys Res 107(D19):8031. doi:10.1029/2001JD000327

    Article  CAS  Google Scholar 

  • Novakov T et al (2000) Origin of carbonaceous aerosols over the tropical Indian Ocean: biomass burning or fossil fuels. Geophys Res Lett 27:4061–4064

    Article  CAS  Google Scholar 

  • Oglesby RJ, Marshall S, Tylor JA (1998) The climate effects of biomass burning: investigation with a global climate model. Environ Model Softw 14:253–259

    Article  Google Scholar 

  • Pachauri T, Singla V, Satsangi A et al (2013) Characterization of carbonaceous aerosols with special reference to episodic events at Agra, India. Atmos Res 128:98–110. doi:10.1016/j.atmosres.2013.03.010

    Article  CAS  Google Scholar 

  • Panda S et al (2016) Organic and elemental carbon variation in PM2.5 over megacity Delhi and Bhubaneswar, a semi-urban coastal site in India. Nat Hazards 80:1709–1728. doi:10.1007/s11069-015-2049-3

    Article  Google Scholar 

  • Pant P, Shukla A, Kohl SD, Chow JC, Watson JG, Harrison R (2015) Characterization of ambient PM at a pollution hotspot in New Delhi, India and inference of sources. Atmos Environ 109:178–189

    Article  CAS  Google Scholar 

  • Park RJ, Jacob DJ, Chin M, Martin RV (2003) Sources of carbonaceous aerosols over the United States and implications for natural visibility. J Geophys Res 108(D12):4355. doi:10.1029/2002JD003190

    Article  CAS  Google Scholar 

  • Park RJ, Jacob DJ, Field BD, Yantosca RM, Chin M (2004) Natural and transboundary pollution influences on sulfate-nitrate ammonium aerosols in the United States: implications for policy. J Geophys Res 109(D15):204. doi:10.1029/2003JD004473

    Article  CAS  Google Scholar 

  • Park RJ et al (2005) Export efficiency of black carbon aerosol in continental outflow: global implications. J Geophys Res 110(D11):205. doi:10.1029/2004JD005432

    Article  CAS  Google Scholar 

  • Pavuluri CM, Kawamura K, Tachibana E, Swaminathan T (2010) Elevated nitrogen isotope ratios of tropical Indian aerosols from Chennai: implication for the origins of aerosol nitrogen in South and Southeast Asia. Atmos Environ 44:3597–3604

    Article  CAS  Google Scholar 

  • Pavuluri CM, Kawamura K, Aggarwal SG, Swaminathan T (2011) Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical aerosols from Indian region. Atmos Chem Phys 11:8215–8230

    Article  CAS  Google Scholar 

  • Penner JE, Eddleman H, Novakov T (1993) Towards the development of a global inventory for black carbon emissions. Atmos Environ 27(A):1277–1295

    Article  Google Scholar 

  • Pichlmayer F, Schöner W, Seibert P, Stichler W, Wagenbach D (1998) Stable isotope analysis for characterization of pollutants at high elevation alpine sites. Atmos Environ 32:4075–4085

    Article  CAS  Google Scholar 

  • Pipal AS, Tiwarz S, Satsangi PG, Taneja A, Bisth DS, Srivastava AK, Srivastava MK (2014) Sources and characteristics of carbonaceous aerosols at Agra “World heritage site” and Delhi “capital city of India. Environ Sci Pollut Res 21:8678–8691

    Article  CAS  Google Scholar 

  • Prakash JWJ, Ramachandran R, Nair KN, Gupta SK, Kunhikrishnan PK (1992) On the structure of sea breeze front effects observed near the coast line of Thumba, India. Bound Layer Meteorol 59:111–124

    Article  Google Scholar 

  • Ram K, Sarin MM (2009) Absorption coefficient and site-specific mass absorption efficiency of elemental carbon (EC) in atmospheric aerosols over urban, rural and high-altitude sites in India. Environ Sci Technol 43:8233–8239

    Article  CAS  Google Scholar 

  • Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over northern India. J Aerosol Sci 41(1):88–98

    Article  CAS  Google Scholar 

  • Ram K, Sarin MM, Tripathi SN (2010) A 1-year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: characterization, sources and temporal variability. J Geophys Res 115(D24):313. doi:10.1029/2010JD014188

    Article  CAS  Google Scholar 

  • Ramanathan V et al (2001) Indian Ocean Experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res 106(28):28371–28398

    Article  CAS  Google Scholar 

  • Rastogi N, Sarin MM (2005) Long-term characterization of ionic species in aerosols from urban and high-altitude sites in western India: role of mineral dust and anthropogenic sources. Atmos Environ 39:5541–5554

    Article  CAS  Google Scholar 

  • Rastogi N, Sarin MM (2009) Quantitative chemical composition and characteristics of aerosols over western India. One-year record of temporal variability. Atmos Environ 43:3481–3488

    Article  CAS  Google Scholar 

  • Reddy MS, Venkataraman C (1999) Direct radiative forcing from anthropogenic carbonaceous aerosols over India. Curr Sci 76(7):1005–1011

    Google Scholar 

  • Reddy MS, Venkataraman C (2002) A 0.25° × 0.25° inventory of aerosol and sulfur dioxide emissions from India: II. Biomass combustion. Atmos Environ 36:699–712

    Article  CAS  Google Scholar 

  • Rengarajan R, Sarin MM, Sudheer AK (2007) Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J Geophys Res 112(D21):307. doi:10.1029/2006JD008150

    Article  Google Scholar 

  • Rolph GD (2010) Real-time Environmental Applications and display system (READY) website (http://ready.arl.noaa.gov) NOAA Air Resour Lab Silver Spring, MD

  • Ruellan S, Cachier H (2001) Characterisation of fresh particulate vehicular exhausts near a Paris high flow road. Atmos Environ 35:453–468

    Article  CAS  Google Scholar 

  • Saarikoski S, Timonen H, Saarnio K, Aurela M, Jarvi L, Keronen P, Kerminen VM, Hillamo R (2008) Sources of organic carbon in fine particulate matter in northern European urban air. Atmos Chem Phys 8:6281–6295

    Article  CAS  Google Scholar 

  • Safai PD, Raju MP, Rao PSP, Pandithurai G (2014) Characterization of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance. Atmos Environ 92:493–500. doi:10.1016/j.atmosenv.2014.04.055

    Article  CAS  Google Scholar 

  • Sandradewi J, Prévôt ASH, Szidat S, Perron N, Rami Alfarra M, Lanz VA, Weingartner E, Baltensperger U (2008) Using aerosol light absorption measurements for the quantitative determination of wood burning and Traffic emission contributions to particulate matter. Environ Sci Technol 42(9):3316–3323

    Article  CAS  Google Scholar 

  • Sandrini S, Fuzzi S, Piazzalunga A et al (2014) Spatial and seasonal variability of carbonaceous aerosol across Italy. Atmos Environ 99:587–598

    Article  CAS  Google Scholar 

  • Satheesh SK (2012) Atmospheric chemistry and climate. Curr Sci 102(3):426–439

    CAS  Google Scholar 

  • Saxena P, Hildemann LM (1996) Water-soluble organics in atmospheric particles. A critical review of the literature and application of thermodynamics to identify candidate compounds. J Atmos Chem 24:57–109

    Article  CAS  Google Scholar 

  • Seto S, Oohara M, Ikeda Y (2000) Analysis of precipitation chemistry at a rural site in Hiroshima Prefecture, Japan. Atmos Environ 34:621–628

    Article  CAS  Google Scholar 

  • Shaw GE (1991) Aerosol chemical components in Alaska air masses 2. Sea salt and marine product. J Geophys Res 96(B6):22369–22372

    Article  Google Scholar 

  • Shrestha G, Traina SJ, Swanston CW (2010) Black carbon’s properties and role in the environment: a comprehensive review. Sustainability 2(1):294–320

    Article  CAS  Google Scholar 

  • Shubhankar B, Ambade B (2016) Chemical characterization of carbonaceous carbon from industrial and semi urban site of eastern India. SpringerPlus 5(837):1–17. doi:10.1186/s40064-016-2506-9

    CAS  Google Scholar 

  • Simeonov V, Kalina M, Tsakovski S, Puxbaum H (2003) Multivariate statistical study of simultaneously monitored cloud water, aerosol and rainwater data from different elevation levels in an alpine valley (Achenkirch, Tyrol, Austria). Talanta 61:519–528

    Article  CAS  Google Scholar 

  • Simoneit BRT, Rushdi AI, Bin Abas MR, Didyk BM (2003) Alkyl amides and nitriles as novel tracers for biomass burning. Environ Sci Technol 37:16–21

    Article  CAS  Google Scholar 

  • Singh N, Mhawish A, Deboudt K, Singh RS, Banerjee T (2017) Organic aerosols over Indo-Gangetic Plain: sources, distributions and climatic implications. Atmos Environ 157:69–74

    Article  CAS  Google Scholar 

  • Srivastava AK, Bisht DS, Ram K et al (2014) Characterization of carbonaceous aerosols over Delhi in Ganga basin: seasonal variability and possible sources. Environ Sci Pollut Res Int 21(14):8610–8619

    Article  CAS  Google Scholar 

  • Stone EA, Schauer JJ, Pradhan BB, Dangol PM, Habib G, Venkataraman C, Ramanathan V (2010) Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas. J Geophys Res 115(D06):301. doi:10.1029/2009JD011881

    Google Scholar 

  • Streets DG et al (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res 108(D21):8809. doi:10.1029/2002JD003093

    Article  CAS  Google Scholar 

  • Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35(1):602–610

    Article  CAS  Google Scholar 

  • Venkataraman C, Reddy CK, Josson S, Reddy MS (2002) Aerosol size and chemical characteristics at Mumbai, India during the INDOEX-IFP (1999). Atmos Environ 36(12):1979–1991

    Article  CAS  Google Scholar 

  • Venkataraman C, Habib G, Kadamba D et al (2006) Emissions from open biomass burning in India: integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Global Biogeochem Cycles. doi:10.1029/2005GB002547

    Google Scholar 

  • Viana M, Maenhaut W, ten Brink HM, Chi X, Weijers E, Querol X, Alastuey A, Mikuska P, Vecera Z (2007) Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities. Atmos Environ 41:5972–5983

    Article  CAS  Google Scholar 

  • Wang G, Xie M, Hu S, Gao S, Tachibana E, Kawamura K (2010) Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation. Atmos Chem Phys 10:6087–6096. doi:10.5194/acp-10-6087-2010

    Article  CAS  Google Scholar 

  • Wang L, Zhou X, Ma Y, Cao Z, Wu R, Wang W (2017) Carbonaceous aerosols over China-review of observations, emissions and climate forcing. Environ Sci Pollut Res. doi:10.1007/s11356-015-5398-2

    Google Scholar 

  • Wolff GT, Groblicki PJ, Cadle SH, Countess RJ (1982) Particulate carbon at various locations in the United States. In: Wolff T, Klimisch RL (eds) Particulate carbon atmospheric life cycle. Plenum, New York, pp 297–315

    Chapter  Google Scholar 

  • Yao XH, Zhang L (2012) Chemical processes in sea-salt chloride depletion observed at a Canadian rural coastal site. Atmos Environ 46:189–194

    Article  CAS  Google Scholar 

  • Yao X, Fang M, Chan CK (2003) The size dependence of chloride depletion in fine and coarse sea-salt particles. Atmos Environ 37:743–751

    Article  CAS  Google Scholar 

  • Yu XY, Cary RA, Laulainen NS (2009) Primary and secondary organic carbon downwind of Mexico City. Atmos Chem Phys 9:6793–6814. doi:10.5194/acp-9-6793-2009

    Article  CAS  Google Scholar 

  • Yubero E, Galindo N, Nicolás JF et al (2014) Carbonaceous aerosols at an industrial site in Southeastern Spain. Air Qual Atmos Health 7(3):263–271

    Article  CAS  Google Scholar 

  • Zhang Q, Anastasio C, Jimenez-Cruz M (2002) Water-soluble organic nitrogen in atmospheric fine particles (PM2.5) from northern California. J Geophys Res 107(D11):4112. doi:10.1029/2001JD000870

    Article  Google Scholar 

  • Zhang XY, Wang YQ, Zhang XC, Guo W, Gong SL, Zhao P, Jin JL (2008) Carbonaceous aerosol composition over various regions of China during (2006). J Geophys Res 113(D14):111. doi:10.1029/2007JD009525

    Article  Google Scholar 

  • Zhang F, Zhao J, Chen J, Xu Y, Lingling XuL (2011) Pollution characteristics of organic and elemental carbon in PM2:5 in Xiamen, China. J Environ Sci 23(8):1342–1349

    Article  CAS  Google Scholar 

  • Zhao S, Ming J, Sun J et al (2013) Observation of carbonaceous aerosols during 2006–2009 in Nyainqêntanglha Mountains and the implications for glaciers. Environ Sci Pollut Res Int 20(8):5827–5838

    Article  CAS  Google Scholar 

  • Zhou S, Wang Z, Gao R et al (2012) Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China. Atmos Environ 63:203–212

    Article  CAS  Google Scholar 

  • Ziemba LD, Fischer E, Griffin RJ, Talbot RW (2007) Aerosol acidity in rural New England: temporal trends and source region analysis. J Geophys Res 112(D10):S22. doi:10.1029/2006JD007605

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by Japan Society for the Promotion of Science (JSPS) through grant-in-aid Nos. 19204055 and 24221001. We also appreciate the financial support of a JSPS fellowship to P. H., during which the author was on sabbatical from Indian Space Research Organisation (ISRO), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Hegde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, P., Kawamura, K. Chemical Constituents of Carbonaceous and Nitrogen Aerosols over Thumba Region, Trivandrum, India. Arch Environ Contam Toxicol 73, 456–473 (2017). https://doi.org/10.1007/s00244-017-0426-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-017-0426-5

Navigation